Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
Шрифт:
14
Равняясь на Эйнштейна
Предположим, что проект Аугера или некоторый другой эксперимент покажет, что СТО Эйнштейна нарушается. Это будет плохой новостью для теории струн: Это означало бы, что первое великое экспериментальное открытие двадцать первого века было полностью неожиданным для самой популярной «теории всего». Теория струн предполагает, что СТО верна точно в том виде, как она была записана Эйнштейном сто лет назад. На самом деле важным достижением теории струн было сделать теорию струн согласующейся как с квантовой теорией, так и с СТО. Так что теория струн предсказывает, что независимо от того, как далеко находятся их источники
Что означало бы для предсказаний СТО быть фальсифицированными? Имеются две возможности. Одна в том, что СТО неверна, но другая возможность приводит к углублению СТО. На этом разграничении основывается история, возможно, самой удивительной новой идеи, появившейся в фундаментальной физике в последнее десятилетие.
Имеются несколько экспериментов, которые могли бы обнаружить нарушение или модификацию СТО. Эксперимент Аугера мог бы сделать это, но также это могли бы сделать наши наблюдения гамма-вспышек. Это гигантские взрывы, которые за несколько секунд могут произвести столько света, сколько излучает целая галактика. Как подразумевает название, большая часть этого света излучается в виде гамма-лучей, которые являются очень энергичной формой фотонов. Сигналы от этих взрывов достигают Земли в среднем около раза в день. Впервые они были обнаружены в конце 1960-х военными спутниками, построенными для поиска нелегальных испытаний ядерного оружия. Сегодня они наблюдаются научными спутниками, чья цель и заключается в их обнаружении.
Мы не знаем точно, что является источником гамма-вспышек, хотя имеются правдоподобные теории. Они могут возникать от столкновения двух нейтронных звёзд или нейтронной звезды и чёрной дыры. Каждая пара могла бы вращаться друг вокруг друга миллиарды лет, но такие системы нестабильны. Поскольку они излучают энергию в виде гравитационных волн, они очень медленно сближаются в направлении друг друга по спирали, пока, наконец, не столкнутся, породив самое неистовое и энергичное из известных событий.
СТО Эйнштейна говорит нам, что весь свет путешествует с одинаковой скоростью независимо от его частоты. Гамма-вспышки обеспечивают лабораторию для проверки этого утверждения, поскольку они дают очень короткую вспышку фотонов в широком диапазоне энергий. Самое важное, им могут потребоваться миллиарды лет, чтобы достичь нас, и в этом заключается сердцевина эксперимента.
Предположим, что Эйнштейн ошибся и фотоны с различными энергиями путешествуют со слегка различными скоростями. Если два фотона, созданные в одном и том же удалённом взрыве, достигли Земли за разные времена, это, несомненно, будет указывать на нарушение СТО.
Что могло бы подразумевать такое важное открытие? Это могло бы, в первую очередь, зависеть от физического масштаба, на котором происходит нарушение. Одна ситуация, когда мы ожидаем, что разрушение СТО происходит на планковской длине. Вспомним из предыдущих глав, что длина Планка составляет около 10– 20 от размера протона. Квантовая теория говорит нам, что этот масштаб представляет порог, ниже которого классическая картина пространства-времени распадается. Эйнштейновская СТО является частью классической картины, так что мы можем ожидать, что она нарушится точно в этой точке.
Могут ли какие-нибудь эксперименты увидеть эффект нарушения структуры пространства и времени на планковском масштабе? С помощью современной электроники могут быть обнаружены очень мелкие разницы во временах прибытия фотонов, но достаточно ли современная электроника хороша, чтобы измерить даже ещё более ничтожные эффекты квантовой гравитации? За десятилетия мы, теоретики, приучились, что планковская длина столь мала, что ни один осуществимый сегодня эксперимент не смог бы её обнаружить. Точно так же большинство профессоров физики сотню лет назад были уверены, что атомы слишком малы, чтобы увидеть их, мы повторяли эту ложь в бесчисленных статьях и лекциях. Но это ложь.
Поразительно, это говорилось, пока в середине 1990-х для нас не стало ясно, что мы на самом деле могли бы прозондировать масштаб Планка. Как временами происходит, несколько людей осознали это, но в итоге были отвергнуты, когда они попытались опубликовать свои идеи. Одним был испанский физик Луис Гонсалес-Местрес из Центра национальных научных исследований в Париже. Открытие, подобное этому, может быть сделано несколько раз независимо, пока кто-то не привлечёт внимания сообщества специалистов, в известном смысле, навязав его. В данном случае это был Джованни Амелино-Камелиа из Университета Рима. Сейчас, разменяв свой пятый десяток лет, Амелино-Камелиа энергичен, сфокусирован и влюблён в физику, со всем шармом и огнём, ассоциирующимися с южной Италией. Квантово-гравитационное сообщество счастливо считать его своим членом.
Когда Амелино-Камелиа был постдоком в Оксфорде, он установил себе задачу поиска способа наблюдения физики на планковском масштабе. В то время это казалось совершенно сумасшедшей целью, но он вызвался доказать, что общепринятое знание неверно и можно достичь некоторого способа сделать это. Он был вдохновлён проверками распада протона. Распад протона (см. главу 4) был предсказан как экстремально редкое событие, но если вы соберёте достаточно протонов вместе, вы могли бы ожидать увидеть его. Гигантское число протонов выполнило бы функцию усилителя, сделав видимым нечто экстремально малое и редкое. Вопрос, которым задался Амелино-Камелиа, был в том, а не мог бы какой-то такой усилитель помочь обнаружить явления на планковском масштабе.
Мы уже отмечали два примера успешного усиления: космические лучи и фотоны от гамма-вспышек. В обоих случаях мы использовали саму вселенную как усилитель. Её огромные размеры очень сильно усиливают вероятность экстремально редких событий, а гигантское количество времени, которое нужно свету, чтобы пропутешествовать через неё, может усилить мельчайшие эффекты. На то, что эти виды экспериментов могли бы теоретически сигнализировать о нарушении СТО, внимание обращалось и ранее. Амелино-Камелиа открыл именно то, что мы могли бы на самом деле разработать эксперименты для зондирования планковского масштаба, а поэтому квантовой гравитации.
Типичное изменение в скорости фотона из-за квантовой гравитации должно было бы быть неправдоподобно малым, но эффект чрезвычайно усиливается за время его путешествия от гамма вспышки, которое может составлять миллиарды лет. Физики несколько лет назад осознали, используя грубые оценки размера эффектов квантовой гравитации, что промежуток времени между прибытиями фотонов с различной энергией, которые путешествовали так долго, мог бы составлять около 1/1000 секунды. Это мельчайший промежуток времени, но он хорошо попадает в область, которая может измеряться современной электроникой. На самом деле новейший детектор гамма-лучей, названный GLAST (Gamma Ray Large Area Space Telescope — Пространственный Гамма-лучевой Телескоп Большой Площади), имеет этот уровень чувствительности. Он запланирован к запуску летом 2007 года, и его результаты страстно ожидаются.