Чтение онлайн

на главную

Жанры

Несостоявшаяся информационная революция. Условия и тенденции развития в СССР электронной промышленности и средств массовой коммуникации. Часть I. 1940–1960 годы
Шрифт:

По конструктивно-технологическому исполнению все ИС подразделяются на следующие типы:

• Пленочные микросхемы – все элементы и межэлементные соединения выполнены в виде пленок:

– толстоплёночная интегральная схема (нанесение слоев паст толщиной от 1 до 25 мкм);

– тонкоплёночная интегральная схема (вакуумное напыление плёнок толщиной до 1 мкм).

• Полупроводниковые микросхемы – все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния или германия).

• Гибридные микросхемы – кроме полупроводникового кристалла содержат несколько бескорпусных диодов, транзисторов и (или) других электронных компонентов, помещенных в один корпус.

Микросхема,

исполненная на пленке, напоминает слоеный пирог. На основание схемы – германиевую или кремниевую пластину толщиной не более 0,5 мм – наносят, слой за слоем, различные материалы: алюминий играет роль проводника, нихром – сопротивления, окись кремния – диэлектрика. При этом каждый слой получает рисунок от фотошаблона, созданного на этапе схемотехнического проектирования. В результате образуются компоненты ИС – участки, эквивалентные по своим свойствам транзисторам, конденсаторам и резисторам.

При изготовлении полупроводниковых ИС (англ. system-on-chip) требуется неоднократное проведение фотолитографического процесса с воспроизведением на исходном чипе совмещающихся между собой различных рисунков (фотошаблонов). Элементы будущей ИС создаются посредством легирования, то есть внедрения (загонки) в пластину различных примесей и их распределения (разгонки) по требуемому объему. Основным методом легирования является диффузия парами гидрида фосфора, мышьяка и бора при температуре 1100–1200 градусов Цельсия.

Точность поддержания температуры, постоянство концентрации примеси у поверхности чипа, длительность процесса отжига определяют распределение примеси по толщине пластины и, соответственно, точные параметры элементов будущей микросхемы. Скорость роста эпитаксиального слоя – порядка 1 мкм/мин, но ее можно регулировать. Толщина эпитаксиального слоя составляет от нескольких микрометров для сверхвысокочастотных транзисторов до ~100 мкм для высоковольтных тиристоров.

Важнейшая характеристика ИС – степень интеграции, то есть число активных элементов (для определённости – транзисторов) в одной сборке. Вплоть до середины 1960-х годов среди производителей полупроводниковых приборов господствовало убеждение в том, что, по мере насыщения ИС активными элементами, практический выход пригодных изделий будет столь низким, что никогда не принесет выгоды. «Это – эффект множества яиц: чем больше вы их накладываете в корзину чипа, тем вероятнее, что он будет плохой», – утверждал в 1965 г. вице-президент Bell Labs Джек Мортон, считавшийся гуру транзисторной схемотехники. [12]

12

Шевченко В. Bell Labs: упущенная возможность, или Роль личности в технологии// Компьютерное обозрение. – 2007. № 23 (591).

Военные программы и подготовка полета космического корабля «Аполлон» на Луну потребовали создания миниатюрных электронных приборов на базе микросхем, содержащих до 25 элементов. Немаловажное значение для повышения степени интеграции элементов ИС имело решение корпорации IBM о разработке электронных запоминающих устройств на базе МОП-транзисторов («Металл-Окисел-Полупроводник»). Данный проект предусматривал создание ИС, содержащих не менее 215 элементов на одном чипе.

Применение технологий ионной имплантации позволило существенно повысить точность управления концентрацией и глубиной легирования. Основными блоками ионно-лучевой установки являются: источник ионов, ионный ускоритель, магнитный сепаратор, система сканирования и камера, в которой находится бомбардируемый образец. Позднее, в 1980-е годы, для контроля топологических чертежей и фотошаблонов стали применять ЭВМ, что обеспечило высокое качество разработок и привело к созданию систем машинного проектирования сверхбольших интегральных схем (СБИС).

В

СССР промышленное производство больших интегральных схем (БИС) началось с опоздания. Первая отечественная серийная БИС «Тропа» с 20 элементами в кристалле являлась аналогом американских микросхем серии SN-51 фирмы Texas Instruments. «Тропа» была изготовлена в 1962 г. в НИИ-35 коллективом, который в дальнейшем перешел на работу в НИИ микроэлектроники (НИИМЭ). Первый ГОСТ, устанавливающий единую систему обозначений ИС отечественного производства, вышел в 1968 г., а в 1969 г. – Общие технические условия на полупроводниковые (НП0.073.004ТУ) и гибридные (НП0.073.003ТУ) микросхемы 58-ми типономиналов. Последние маркировались буквами после цифровой части обозначения ИС, например 1ХЛ161Ж.

Создание сверхбольших интегральных схем создало условия, когда микроэлектроника и вычислительная техника образуют единое целое.

Первый микропроцессор «Intel 4004» (создан 15 ноября 1971 г.) состоял из 2300 транзисторов, работал с тактовой частотой 108 кГц и обладал вычислительной мощностью, сравнимой с мощностью первого электронного компьютера ENIAC. Своим названием «4004» – й обязан тем, что для хранения одной цифры в ячейке запоминающего устройства электронного калькулятора требуется 4 бита. Это изделие нашло практическое применение в калькуляторах, в устройствах управления дорожными светофорами и в медицинских анализаторах крови.

Почти сразу, вслед за семейством Intel 4004/4040, Texas Instruments выпускает 4-х разрядный процессор TMS 1000 – первый в мире монокристальный микрокомпьютер для карманных калькуляторов.

Микропроцессор оказался изобретён в рамках совсем другой технической задачи. Первоначально руководство Intel не помышляло ни о каких процессорах. Корпорация занималась разработкой и продажами микросхем памяти, на которые тогда как раз ожидалось увеличение спроса. В 1969 г. в Intel появились несколько человек из Buscom – молодой японской компании, производителя калькуляторов. Им требовался набор из 12 интегральных схем в качестве основного элемента нового дешёвого настольного калькулятора. Теда Хоффа (руководитель отдела, занимавшегося разработкой различных устройств на основе продукции Intel), возможно, не без участия японца Матасоши Шима (Masatoshi Shima), осенила блестящая идея. Вместо того чтобы создать калькулятор с некоторыми возможностями программирования, он предложил сделать все наоборот: универсальный компьютер, программируемый для работы в качестве калькулятора.

Развивая идею, в течение осени 1969 г. Тед Хофф определился с архитектурой будущего микропроцессора. Устройство состояло из четырёх 16-выводных микросхем, имело энергонезависимую память для загрузки программ и расширитель ввода-вывода для связи с клавиатурой и индикатором. Производственный процесс был довольно примитивным. Президент и главный исполнительный директор Intel Энди Гроув в одном из интервью рассказывал:

«Производственная зона смотрелась, как мастерская кустаря-одиночки: кругом валялись шланги, провода, различные приспособления; все это напоминало компьютерный эквивалент мастерской братьев Райт. Большая часть технологических операций выполнялась вручную. Рабочие в цехе пинцетом загружали кремниевые пластины, из которых вырезались кристаллы, на «кораблики» и заталкивали их в раскаленные докрасна печи. Затем операторы вручную манипулировали кранами, подвергая пластины воздействию различных газов». [13]

13

Микропроцессору – 25 лет//Computerworld Россия. – 1996. № 42.

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР