Нестандартные задачи по математике в 3 классе
Шрифт:
Оля уменьшила перекладину креста и увеличила нижний конец на столько же пирожных.
Ответ виден на рисунке.
Задача 52. Пятеро друзей обменялись фотографиями. Сколько для этого понадобилось фотографий?
Каждый должен подарить по четыре фотографии; значит, всего понадобится 4 · 5 = 20 фотографий. (Другой способ рассуждения: каждый должен
Ответ: 20 фотографий.
Задача 53. В стакане чая растворили 10 г сахара. Маша выпила полстакана. Сколько сахара выпила Маша?
Так как сахар растворен в стакане, то можно считать, что в равных количествах чая содержится равное количество сахара. Поэтому в половине стакана содержится половина всего сахара, то есть 5 г.
Ответ: 5 г.
Задача 54. Какое число в задаче на вычисление пропущено: (483 — 23) : __ — 5200 : 26?
Во-первых, должно быть осуществимо деление числа 483 — 23 = 460 на пропущенное число, а во-вторых, результат этого деления должен быть не меньше, чем число 5200: 26 = 200.
Ответ: 1 или 2.
Задача 55. Имеются 5 монет. Три из них имеют массу по 10 г каждая. Об остальных двух монетах известно, что они имеют одинаковую массу, а на вид не отличаются от 10-граммовых. Как двумя взвешиваниями на чашечных весах без гирь найти хотя бы одну монету в 10 г?
Надо сравнить массы любых двух монет. Потом надо сравнить массы еще двух монет. Если в обоих случаях весы уравновесились или в обоих случаях не уравновесились, то пятая монета — 10-граммовая. Если в одном из случаев весы уравновесились, а в другом не уравновесились, то уравновесившиеся монеты — 10-граммовые.
Ответ: Надо сравнивать массы монет, кладя на каждую чашу весов по одной монете.
Задача 56. Перерисуй по клеткам угол АВС:
Задача 57. Какими двумя цифрами оканчивается выражение 2539 + 4873 + 2965 + 8427 + 6461?
Крайние слагаемые дают число, делящееся на 100, также и вторые от концов. Значит, сумма оканчивается на 65.
Ответ: 65.
Задача 58. Компьютер написал все числа от 1 до 1000. Сколько цифр написал компьютер?
9 однозначных чисел написано 9 цифрами, 90 двузначных написано 180 цифрами, 900 трехзначных 2700 цифрами, число 1000 — четырьмя цифрами, итого 2893 цифры.
Ответ: 2893.
Задача 59. Разместить числа от 0 до 8 в клетках квадрата, чтобы суммы чисел по всем горизонталям, вертикалям и диагоналям равнялись между собой. Почему число 4 должно стоять в центре квадрата?
Первая часть задачи может быть решена подбором. Но еще лучше решить ее с помощью рассуждений, как это сделано здесь.
1) Найдем сумму всех чисел от 0 до 8. Она равна 36.
2) Найдем сумму чисел в каждом из трех столбцов (или, что то же, в каждой из трех строк или в каждой из двух диагоналей). Она равна 36 : 3 = 12.
3) Выпишем все тройки чисел от 1 до 8, дающие в сумме 12:
0 + 4 + 8 = 0 + 5 + 7 = 1 + 3 + 8 = 1 + 4 + 7 = 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4 + 6 = 3 + 4 + 5.
4) В центр поместим число, имеющееся в четырех таких тройках. Это число 4:
5) В один из углов поместим число, имеющееся в трех таких тройках. Это, например, число 1:
6) Заполним еще один угол так, чтобы сумма чисел в диагонали равнялась 12:
7) Заполним еще один угол любым из оставшихся чисел, входящих в три тройки (например, числом 5):
8) Закончим работу, следя за тем, чтобы каждая сумма в строках, столбцах и диагоналях равнялась 12.
Ответ: Один из возможных квадратов:
Число 4 должно стоять в центре, так как это единственное число, входящее в четыре тройки, дающие в сумме 12, а центральная клетка входит в один столбец, в одну строку и в две диагонали, то есть участвует в четырех суммах.
Задача 60. Какое число пропущено в следующем равенстве?
(___— 254) · (585 + 2) = 0.
Так как произведение двух множителей равно нулю, то один из множителей должен быть равен нулю, но второй множитель не равен нулю, значит, равен нулю первый множитель. Получается, что ___ — 254 = 0, а значит, пропущено число 254.
Ответ: 254.
61 - 70
Задача 61. 1 февраля 1900 г. была пятница. Каким днем недели было 1 марта 1900 г.?
В данной задаче нужно выяснить:
1) сколько дней прошло с 1 февраля 1900 г. до 1 марта 1900 г. (так как 1900 г. в григорианском календаре был невисокосным, то в феврале было 28 дней; заметим, что, в отличие от юлианского календаря («старого стиля») в григорианском календаре годы, оканчивающиеся двумя нулями являются високосными лишь в том случае, если они делятся на 400 : 1800 и 1900 — невисокосные, а 2000, 1600 и 2400 — високосные);