Невидимый современник
Шрифт:
Опыты показали, что при облучении бактерий наиболее эффективны жесткие (то есть особенно редко ионизирующие) рентгеновы лучи, затем идут мягкие рентгеновы лучи, нейтроны, альфа-частицы. Поэтому можно сказать, что смерть бактерии вызывается небольшой энергией. А более точные расчеты, проведенные Ли, показали, что для этого достаточно энергии одной ионизации.
Видите, сколько опытов понадобилось только для того, чтобы получить какие-то сведения о механизме действия радиации — не на слона, не на кукурузу, а на микроскопическую бактериальную клетку! А ведь многие пытались даже при облучении многоклеточных
Что значит убить бактерию? Хотя мы только что довольно много говорили о смерти бактерий, вызываемой облучением, ответить на этот вопрос не так просто. Дохлую лошадь или собаку нетрудно отличить от живой. Слишком много признаков помогают нам сделать это. А как отличить живую бактериальную или, скажем, дрожжевую клетку от «дохлой»?
В опытах Ли, о которых мы только что рассказывали, применяли методику, обычную для микробиологических опытов. Определенное число бактерий сеяли на стерильную питательную среду и ставили в термостат, где поддерживается благоприятная для развития температура. Через некоторое время подсчитывали число колоний, которые видны простым глазом. Каждая из них, представляющая собой округлое пятно, состоит из потомков одной клетки. Вычитая из числа посеянных клеток число колоний, получим число погибших клеток.
Но разве погибли те клетки, которые не дали колоний? Ведь мерина или мула не считают дохлыми только потому, что они не дают потомства. А если мы облучим бактерий дозой радиации, вызывающей практически полную потерю способности к образованию колоний, и изучим биохимическими методами, то увидим, что эти клетки почти полностью сохранили способность дышать и усваивать питательные вещества. Чтобы лишить бактерию этих свойств, необходимы гораздо большие дозы. А исследовав бактерий под микроскопом, мы увидим, что они не потеряли даже способности к росту. Клетки вытягиваются в длинные нити.
Можно подойти к вопросу и иначе. Облучить клетки, пересчитать их и поместить в условия, где они могут жить, не размножаясь. Подсчитав число клеток через некоторое время, мы увидим, что их стало меньше. Часть клеток лизировалась, или, попросту говоря, растворилась. Причем это не просто влияние среды. Ведь число контрольных не облучавшихся бактерий не изменилось. Лизис — это, конечно, смерть бактерии, но чтобы его вызвать, нужны колоссальные дозы, совершенно не сравнимые с теми, которые подавляют способность к размножению.
Вопрос этот не новый, и сталкиваться с ним приходится вне всякой связи с лучами. С ним, в частности, имеют дело при борьбе с болезнетворными микробами. Есть средства, вполне надежно уничтожающие бактерий, например огонь, которым широко пользуются при стерилизации. Наиболее распространенные дезинфекционные средства, вроде карболовой кислоты, тоже убивают бактерий. Но подобные сильные средства нельзя применять для лечения людей. Медицине известно сейчас большое количество
Что для нас более интересно: лизис или потеря способности к размножению? Конечно, второе. Ведь для лизиса требуются столь высокие дозы, что для радиобиолога они почти не представляют интереса. Они изменяют заметный процент молекул, и ничего необычного в такой гибели, так же как и в вызываемой огнем или кипятком, нет. А гибель, под которой мы понимаем потерю способности к размножению, действительно интересна. Ведь она вызывается совершенно ничтожной энергией — одной ионизацией, что даже для микроскопической бактерии является очень малой величиной.
То обстоятельство, что «гибель» бактерии — следствие одной-единственной ионизации, представляется действительно удивительным. Уж не в том ли здесь дело, что внутри бактерии есть какая-то особо важная мишень, о которой писал Хольвек?
Бактерии интересовали Ли не сами по себе. Ставя на них опыты, он хотел постичь общие законы действия ионизирующей радиации на живые организмы. И поэтому работал не только на бактериях. Таким образом, можно было выяснить, какие закономерности носят общий характер, а какие нет. Кроме того, сравнивая, скорее можно найти истину.
Ли ставил опыты и с вирусами, с бактериофагами, и с мухами, и с пыльцой растений, даже с растворами химически чистых веществ. Он интересовался экспериментами с яйцами морских ежей и с культурами тканей.
Закономерности, приводящие к потере способности размножаться и к гибели, оказались одинаковыми независимо от происхождения клеток. Растения, животные и микроорганизмы, одноклеточные и клетки, входящие в состав сложных организмов, реагируют на облучение очень сходным образом. Следовательно, механизм действия лучей во всех случаях одинаков.
Но к чему он сводится? Ли пришел к выводу, что в основе наблюдаемого эффекта лежит «попадание» в наследственный аппарат клетки. При этом вовсе не нужно, чтобы в клетке была одна мишень. Облучение может произвести в бактериальной клетке любое из многих сотен наследственных изменений, которое сделает ее потомство нежизнеспособным. Чтобы прийти к такому выводу, Ли потребовалось использовать факты, накопленные радиационной генетикой, которая ко времени работ Ли уже была неплохо развита и с которой скоро познакомимся и мы.
А пока придется сделать отступление и поговорить не о биологии, а о химии. У радиобиологии есть «сестра» — радиационная химия, наука о химических превращениях, вызываемых ионизирующими лучами. В наше время эта наука очень важна. Не зная, как радиация действует на те или иные материалы, нельзя построить ни атомного реактора, ни атомного ледокола. Однако этой наукой занимались и раньше. Очень часто так бывает: исследуют ученые что-то интересующее их с теоретической точки зрения, а потом оказывается, что они закладывали научный фундамент для решения важнейших практических проблем.