Невидимый современник
Шрифт:
Разная чувствительность клеток имеет большое практическое значение. Ведь применение радиации для лечения злокачественных опухолей на том и основано, что раковые клетки относятся к числу радиочувствительных. Впрочем, это и следовало ожидать на основании правила Бергонье — Трибондо. Эти клетки характеризуются повышенной способностью к размножению и слабой степенью специализации.
Еще большие различия в радиочувствительности обнаружатся, если сравнивать не разные клетки одного и того же организма, а разные организмы. Ученые ставили опыты со многими сотнями, если не тысячами, разных видов животных,
Вирус табачной мозаики 250 000 рентген
Бактериофаг кишечной палочки 420 000
Бактериальные споры 120 000
Кишечная бактерия 7500
Хлорелла (водоросль) 18 000
Дрожжевые грибки 30 000
Кукуруза 4000
Очиток 75 000
Традесканция 750
Амеба 100 000
Инфузория 35 000
Улитка 20 000
Плодовая мушка, взрослая 95 000
Плодовая мушка, личинки 130
Плодовая мушка, яйца 150
Золотая рыбка 670
Лягушка 700
Черепаха 1500
Змея 82 000
Курица 1000
Мышь 600
Собака 300
Обезьяна 500
Интересный перечень, не правда ли? Прежде всего ясно видно, что смертельные дозы для разных организмов варьируют в исключительно широких пределах: от сотни рентген почти до миллиона! Можно заметить также, что чем сложнее организм, тем, как правило, он оказывается более чувствительным. Но это лишь тенденция, не больше. Так, среди высших растений мы находим очень устойчивый очиток, способный выдержать б'oльшие дозы, чем бактерия, и традесканцию, которая по чувствительности стоит рядом с млекопитающими.
Кроме того, нужно обратить внимание на сильную зависимость чувствительности от стадии развития. Споры значительно устойчивее самих бактерий, а яйца насекомых, наоборот, гораздо чувствительнее взрослых особей. Это отнюдь не противоречие. Ведь яйца насекомых — стадия, где происходит очень быстрое размножение клеток, а спора — состояние глубокого покоя.
Может вызвать удивление, что в таблице нет человека. Но он не составляет исключения среди прочих млекопитающих. Да и для него смертельная доза известна не особенно точно. Если человек случайно подвергался смертельному облучению и даже была довольно точно известна доза, никто не смотрел, когда больной скончается, а делалось все возможное, чтобы спасти ему жизнь. Обычно считают, что среднелетальная доза для человека — около 500 рентген.
Столь большие различия в радиочувствительности разных организмов, органов, стадий развития требуют своего объяснения. И причины резкой радиочувствительности — второй из основных вопросов радиобиологии, на которые должна дать ответ теория. Он очень важен и с практической стороны. Ведь если бы удалось по своему желанию изменять радиочувствительность живых организмов и их клеток в той же степени, как это имеет место в природе, это значило бы, с одной стороны, сильное уменьшение опасности радиации для человека, с другой — почти фантастические успехи в борьбе с некоторыми заболеваниями…
Итак, нужно найти ответ на два вопроса: почему при облучении живых организмов столь малые количества энергии дают столь
Ведь для ионизирующих лучей нет преград: они проникают в любое вещество и на любую глубину. Значит, оставляют свою энергию во всех органах животного, во всех клетках, во всех частях клетки. Радиация отдает свою энергию веществу путем ионизаций, причем ионизируются любые атомы. Стало быть, под влиянием облучения должны измениться разнообразнейшие химические вещества, входящие в состав всех клеток живых организмов.
Это общие соображения. Но так оно оказывается и в действительности. Радиация вызывает массу изменений и в физиологических и в биохимических процессах. Практически она влияет на все, была бы взята лишь достаточно большая доза.
При сравнительно невысоких дозах нарушается основной обмен (потребление кислорода и др.), усиливается водный обмен, снижается кровяное давление, угнетается деятельность желез внутренней секреции… Уменьшается вес отдельных органов и всего организма. Выделение различных веществ из организма нарушается. Изменяется проницаемость тканевых барьеров. Животные становятся более чувствительными как к повышенным, так и к пониженным температурам, к изменению барометрического давления, к физической нагрузке… Все, что написано в этом абзаце, приведено лишь для примера. Следует добавить: и т. д. и т. п., может быть для внушительности даже повторив несколько раз.
Не менее многообразны и биохимические изменения. Достаточно сказать: облучение затрагивает абсолютно все стороны обмена веществ. И это действительно так. Но нужно подчеркнуть, что некоторые из биохимических изменений играют очень важную роль в возникновении и судьбе первичных лучевых повреждений. Во-первых, обмен нуклеиновых кислот — веществ, ответственных за передачу всех наследственных свойств и признаков от клетки к клетке и от организма к организму, а также лежащих в основе процессов синтеза всех биологически важных веществ. Но о нуклеиновых кислотах мы будем говорить при рассмотрении явлений наследственности и влияния на нее ионизирующих лучей. Там же уместно рассказать и о действии радиации на нуклеиновые кислоты. Во-вторых, биоэнергетические процессы. Но и о них нам придется сказать несколько слов специально в связи с действием радиации на живые клетки.
К этому можно было бы приложить перечень: а кроме того, под действием облучения нарушается углеводный и жировой обмен, изменяется химический состав крови… Но кому будет интересно такое перечисление, когда уже сказано, что радиация влияет на все биохимические процессы.
В заключение нужно отметить еще, что радиация сильно влияет на такую важную сторону жизнедеятельности, как иммунитет. После облучения образование антител сильно подавлено. Это очень интересная и важная область, но она лежит несколько в стороне от того, чем нам предстоит заниматься.