Чтение онлайн

на главную

Жанры

Нейронный сети. Эволюция
Шрифт:

Продолжим с решения третьего примера, когда изменение скорости автомобиля проходило не линейно:

s = t^2

Приращение функции и производная:

s(t) = t^2

s = s(t+t) – s(t) = (t+t) ^2 – t^2 = t^2 + 2tt + t^2 – t^2 = t(2t+t)

Вот мы и решили наш третий пример! Нашли формулу точного изменения скорость от времени. Вычислим производную, в всё той же точки t = 3.

s(t) = t^2

s'(t) = 2*3 = 6

Точный

ответ, в пределах небольшой погрешности, почти сошелся с вычисленном до этого приближенным ответом.

Попробуем усложнить пример. Предположим, что скорость движения автомобиля описывается кубической функцией времени:

s(t) = t^3

Приращение и производная:

s(t) = t^3

s = s(t+t) – s(t) = t^3 + 3 t^2t+ 3t t^2 + t^3 – t^3 = t(3 t^2 + 3tt + t^2)

Из двух последних примеров (с производными функций s(t) = t^2 и s(t) = t^3) следует, что показатель степени числа, становится его произведением, а степень уменьшается на единицу:

s(t) = t

А чему равна производная от аргумента функции? Давайте узнаем…

s(t) = t

Приращение:

s = s(t+t) – s(t) = t + tt = t

Производная:

Получается, что производная от переменной:

t' = 0

Правила дифференцирования и дифференцирование сложных функций

Дифференцирование суммы

(u+v)' = u' + v', где u и v – функции.

Пусть f(x) = u(x) + v(x). Тогда:

f = f(x+x) – f(x) = u(x+x) + v(x+x) – u(x) – v(x) = u(x) + u + v(x) + vu(x) – v(x) = u + v

Тогда имеем:

Дроби u и v при х->0 стремятся соответственно к u'(x) и v' (x). Сумма этих дробей стремится к сумме u'(x) + v' (x).

f'(x) = u' (x) + v' (x)

Дифференцирование произведения

(u*v)' = u' v + v'u, где u и v – функции

Разберем, почему это так. Обозначим f(x) = u(x) * v(x). Тогда:

f = f(x+x) – f(x) = u(x+x) * v(x+x) – u(x) * v(x) = (u(x) + u) * (v(x) + v) – u(x) * v(x) = u(x)v(x) + v(x)u + u(x)v + uvu(x)v(x) = v(x)u + u(x)v + uv

Далее имеем:

Первое слагаемое стремиться к u'(x) v(x). Второе слагаемое стремиться к v'(x)* u(x). А третье, в дроби u/x, в пределе даст число u'(x), а поскольку множитель v стремиться к нулю, то и вся эта дробь обратится в ноль. А следовательно, в результате получаем:

f'(x) = u' (x) v(x) + v' (x) u(x)

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II