Нейронный сети. Эволюция
Шрифт:
Так будет выглядеть выражение, которое скажет нам о том, что между скоростью движения автомобиля и временем существует зависимость:
Каждую минуту, скорость изменяется на значение 0,2.
Не равномерное изменение
Возьмём всё тот же автомобиль, который стоит на месте. Сидя в нем, вы начинаете жать в “пол” педаль газа, удерживая её в этом положении. Скорость движения автомобиля, за счет инерции, будет возрастать
Приведем в таблице, значения скорости в каждую минуту:
Эти данные представляют собой выражение:
s = t^2
Какова скорость изменения скорости автомобиля в каждый момент времени?
Если посмотреть на два предыдущих примера, то в них скорость изменения скорости определялась наклоном графика, коэффициентом крутизны прямой линии А. Когда автомобиль двигался с постоянной скоростью, его скорость не изменялась, и скорость изменения скорости равна 0. Когда автомобиль равномерно набирал скорость, скорость его изменения составляла 0,2 км/мин, на протяжении всего времени движения автомобиля в этом режиме.
А как тогда поступить в этом случае? Как узнать изменение скорости по кривой?
Применение дифференциального исчисления, понятие производной
После трех минут с момента начала движения (t=3), скорость составит 9 км/мин. Сравним со скоростью в конце пятой минуты. После пяти минут с момента начала движения (t=5), скорость составляет 25 км/мин. Не важно, что скорость 25 км/мин – сопоставима со скоростью пули, ведь это воображаемая машина, и едет она с той скоростью, с какой мы захотим. Если провести касательную линию в этих точках, то окажется, что угол наклона у них совершенно разный:
Вы видите, что чем больше скорость в точке касательной, тем её наклон круче. Оба наклона представляют искомую скорость изменения скорости движения. Можно сравнить с вторым примером – линейное изменение.
Но как измерить наклон этих линий? Для этого давайте представим, что наша касательная (t = 3, s = 9), пересекает функцию в двух точках, расстояние между которыми очень мало:
Зная координаты этих точек и проведя проекции по осям, можно вычислить расстояние между этими точками.
Если представить прямоугольный треугольник где гипотенуза – это прямая между двумя точками, а его катеты равны разности проекциям точек по осям (t и s), то поделив противолежащий катет на прилежащий получим тангенс угла, который и будет являться коэффициентом крутизны. Зная который, как во втором примере, мы легко определим изменение скорости в момент t.
Как мы знаем, скорость изменения – это наклон прямой, которую из второго примера мы уже умеем находить. Значит, около точки (t=3), наш коэффициент крутизны будет равен:
Значит, скорость изменения скорости в момент времени три минуты составляет 6,06 км/мин.
Производная функции
Мы можем говорить о скорости изменения чего угодно – физической величины, экономического показателя и так далее.
Рассмотрим функцию y = f(x). Отметим на оси X, некоторое значение аргумента x, а на оси Y – соответствующее значение функции y = f(x).
Дадим аргументу x, некоторое приращение, обозначенное как х. Попадаем в точку х+х. А соответствующие этим значениям аргументов, значение функции обозначим соответственно f(x), f и f(x+х). Приращение аргумента х, есть аналог промежутка времени t, а соответствующее приращение функции – это аналог пути s, пройденного за время t.
Если представить, что х – бесконечно мала, т.е. стремиться к нулю (х-›0), то выражение нахождения изменения скорости можно записать как:
Или исходя из геометрического представления, описанного ранее:
Отсюда вывод, что производная функции f(x) в точке х – это предел отношения приращения функции к приращению её аргумента, когда приращение аргумента стремиться к нулю.
Нахождение некоторых табличных производных
Решим найденным способом, наш первый пример, когда скорость автомобиля была постоянной, на всем промежутке времени. В этом примере, приращение функции равно нулю (s = 0), и соответственно тангенса угла не существует:
s = s(t+t) – s(t) = s(t) – s(t) = 0
Итак, имеем первый результат – производная константы равна нулю. Этот результат мы уже выводили ранее:
Откуда можно сформулировать правило, что производная константы, равна нулю.
s(t) = с, где с – константа
с' = 0
Запись с' – означает что берется производная по функции.
Во второй примере, когда изменение скорости автомобиля проходило линейно, с постоянным изменением, найти производную функции (s = 0,2t + 1,5), не зная правил дифференцирования сложных функций, мы пока не сможем, поэтому отложим этот пример на потом.