Нейросетевая торговая система Meta Trader 4 + MATLAB. Пошаговая разработка. Издание второе
Шрифт:
{
Alert("Идет запись файла");
for(int i=iBars(NULL,60)-1; i>=0; i–)
{
FileWrite(file,
iOpen(NULL,60,i),
iOpen(NULL,1440,iBarShift(NULL,1440,iTime(NULL,60,i))),
iHigh(NULL,1440,iBarShift(NULL,1440,iTime(NULL,60,i))),
iLow(NULL,1440,iBarShift(NULL,1440,iTime(NULL,60,i))),
iClose(NULL,1440,iBarShift(NULL,1440,iTime(NULL,60,i))),
iCustom(NULL,60,"Max",0,1440,60,0,i),
iCustom(NULL,60,"Min",0,1440,60,0,i));
TimeToStr(iTime(NULL,60,i)));
}
}
Alert("Файл записан");
FileClose(file);
}
//+-+
Запустив
Откроем этот файл и добавим в начале десять столбцов In1-10 и один столбец Out.
Заполним эти столбцы Данными из столбца CloseD. Как Вы уже поняли, это данные дневных закрытий.
Далее мы сдвинем эти данные в наших столбцах последовательно на одну ячейку вверх.
Таким образом, мы получим в каждой строке вектор из дневных цен закрытия с глубиной в десять дней – это будут входы нейросети. А в столбце Out, который также сдвинут на один день вперед по отношению к In10, будут обучающие примеры закрытия дня для нейросети.
С помощью надстройки NeuroSolutions, выделив столбцы In1-In10, отформатируем их как входы.
А столбец Out как выход нейросети.
Аналогичным образом разобьем нашу матрицу построчно на обучающее множество.
И множество, которое мы будем использовать для анализа.
Теперь мы сформируем файлы для программы NeuroSolutions.
Откроем NeuroSolutions и нажмем кнопку NeuralBuilder.
Выберем модель нейросети Multilayer Perceptron.
Нажмем
И откроем файл с обучающими входами.
Далее откроем файл с обучающим выходом.
Определим 30% данных из тренировочного множества для перекрестной проверки в процессе обучения нейросети. Жмем кнопку Next до тех пор, пока не сформируется нейросеть.
С помощью кнопки Start и запустим процесс обучения.
После завершения процесса обучения нажмем кнопку Testing.
В выпадающем списке выберем Production.
Выберем файл с данными для анализа.
Создадим текстовой файл Prod.
И экспортируем в него данные с результатами, полученными от нейросети.