Нобелевские премии. Ученые и открытия
Шрифт:
Еще в 80-е годы прошлого века Чарлз Макманн методом спектроскопии обнаружил в некоторых тканях неизвестное вещество, которое поглощало кислород и. имело такие же спектральные линии, как и гемоглобин. Отсюда был сделан вывод, что в тканях содержится какой-то фермент, похожий на гемоглобин. Значение этого открытия стало понятным лишь в 20-е годы, когда Варбург стал заниматься исследованием клеточного дыхания. Он вновь применил спектроскопию и вторично установил сходство катализаторов биологического окисления с гемоглобином. На основании этого Варбург сделал вывод, что дыхательный фермент в своей белковой молекуле также имеет порфириновое ядро с одним атомом железа, который взаимодействует с кислородом.
Эти дыхательные ферменты, обнаруженные по их спектру, были названы
22
Цитохромы были «переоткрыты» (после Макманна) и изучены английским биохимиком Дэвидом Кейлином в 1925 г. — Прим. ред.
В том же 1932 г. венгерский биохимик Альберт Сент-Дьёрдьи приступил к исследованию «желтых» ферментов в своей лаборатории в Сегеде. В отличие от большинства ученых, которые занимались исследованием окислительных процессов, он сосредоточил свое внимание на ферментах, которые активировали водород и переносили его в клетках. На работу Сент-Дьёрдьи большое влияние оказали наблюдения Генриха Виланда, касающиеся воздействия палладия на некоторые органические вещества. Виланд установил, что, вступая в контакт с этим металлом, органические соединения теряют водород, а это равносильно частичному окислению. Это произвело на биохимиков большое впечатление, и они занялись поисками ферментов, оказывающих подобное действие. Вскоре были открыты дегидрогеназы, катализирующие отщепление водорода от молекул [23] .
23
Создателем теории активирования водорода в процессах биологического окисления был русский биохимик Владимир Иванович Палладин. Свою теорию он разработал в 1911—1912 гг. — Прим. ред.
Постепенно из отдельных наблюдений формировалось единое представление о дыхательных ферментах. По линии цитохромов движутся электроны, обеспечивающие активацию кислорода, а с другого направления дегидрогеназы поставляют водород. Так происходит ступенчатое окисление веществ до воды и углекислоты и постепенное выделение энергии. Эти исследования показали взаимосвязь между ферментами и витаминами. Составной частью «желтых» ферментов оказался рибофлавин (витамин В 2). Это открытие было сделано Рихардом Куном и Паулем Каррером. Сам Сент-Дьёрдьи занялся исследованием красного стручкового перца, который всегда производился в большом количестве около Сегеда, н обнаружил, что знаменитая венгерская паприка очень богата витамином С. Оказалось, что этот витамин также участвует в процессах переноса водорода.
Обычно исследования биохимических реакций проводятся в гомогенной массе, получаемой путем растирания в порошок живых тканей. Проводя такие опыты над гомогенатом мышечной ткани, некоторые ученые, в том числе Сент-Дьёрдьи, обнаружили, что при добавлении янтарной, фумаровой, яблочной и щавелево-уксусной кислот окислительные процессы усиливаются. Почти одновременно в начале 30-х годов шведский химик Тор-стен Людвиг Тунберг открыл ферменты, являющиеся дегидрогеназами названных кислот. Стало ясно, что эти кислоты, оказывая определенное каталитическое действие, служат звеньями в цепи окислительных процессов, при которых происходит выделение энергии. В этих открытиях решающая заслуга принадлежит Альберту Сент-Дьёрдьи, получившему в 1937 г. Нобелевскую премию по медицине и физиологии за
Вскоре после этого английский биохимик Ханс Адольф Кребс установил, что «эффект Сент-Дьёрдьи», наблюдаемый при добавлении фумаровой кислоты к гомогенату клетки, можно получить и с помощью двух других органических кислот (кетоглутаровой и пировиноградной). Поначалу это только внесло еще большую путаницу в реакции, которые не могли объяснить биохимики. Однако Кребс первым из биохимиков догадался, что все эти органические кислоты составляют звенья одной цепи окисления органических веществ до двуокиси углерода и воды. Он предложил схему, описывающую процесс постепенного окисления органических веществ.
Вначале к щавелевоуксусной кислоте добавляется какое-то соединение с двумя атомами углерода и образуется трикарбоновая кислота, которая под действием различных ферментов превращается в другие, подобные ей органические кислоты. На каждой стадии происходит выделение воды, водорода или двуокиси углерода, причем энергия активированного водорода включается в макроэргические связи аденозинтрифосфата (АТФ) — универсального аккумулятора энергии в живых организмах. Кребс, предложивший цикл трикарбоновых кислот (цикл Кребса) в 1937 г., поначалу подвергся резкой критике. Однако постепенно ученые оценили эту идею, которая внесла упорядоченность в представление о цепи реакций аэробного окисления.
Но, к немалому огорчению биохимиков, одно звено в этой цепи оставалось неизвестным: было не ясно, какое соединение с двумя атомами углерода вводится в цикл Кребса. Этим вопросом занялся Фриц Альберт Липман, работавший в свое время в Институте физиологии клетки в Берлине (Далем), а с 1939 г. — в Медицинской школе Корнеллского университета (шт. Нью-Йорк). Он продолжал развивать теорию, согласно которой этим соединением является ацетилфосфат, но такое предположение не увязалось с экспериментальными данными, и ученые стали все больше сомневаться в справедливости этой хорошей теории. Но именно в то время, когда большинство исследователей были готовы вообще отказаться от этой идеи, Липман с сотрудниками открыли вещество, отличающееся высокой термостойкостью и имеющее сравнительно небольшую молекулярную массу. Это говорило о том, что данное вещество является коферментом. Он был обозначен буквой А.
Кофермент А и оказался тем недостающим звеном в цепи реакций биологического окисления, которое столь долго и тщетно искали ученые. По своей структуре он близок к витаминам группы В. Его функция в цикле Кребса — «улавливать» ацетиловый остаток пировиноградной кислоты и вызывать его соединение с щавелевоуксусной кислотой, приводящее к образованию трикарбоновой кислоты — первое звено цикла. Далее происходят уже описанные процессы медленного окисления, в ходе которых из первоначального углеродного скелета пировиноградной кислоты образуются три молекулы двуокиси углерода и пять пар двойных активированных атомов водорода, несущих в себе энергию, необходимую для организма. В конце цикла вновь образуется щавелевоуксусная кислота, в которую кофермент А подает новую молекулу пировиноградной кислоты. Так работает этот «конвейер», который в соответствии с потребностями организма создает богатые энергией вещества или соединения, необходимые для образования макромолекул. Решающая заслуга в открытии цикла аэробного окисления в организме принадлежит X. Кребсу и Ф. Липману. За свои достижения оба они были удостоены в 1953 г. Нобелевской премии по медицине и физиологии.
Пировиноградная кислота, участвующая в цикле Кребса, образуется в результате гликолиза — анаэробного расщепления углеводов. В этом процессе фосфорилирования молекула глюкозы соединяется с фосфорной кислотой и затем расщепляется на две. Из шестиатомного кольца получаются два соединения с тремя атомами углерода, которые после различных преобразований приводят к образованию пировиноградной кислоты. Если эта кислота не включается в цикл Кребса, то из нее образуются молочная кислота или другие вещества. Большая заслуга Кребса состоит в том, что он сумел связать воедино все эти цепи.