Нобелевские премии. Ученые и открытия
Шрифт:
Своими исследованиями Мендель определил развитие науки на десятилетия. В 60-е годы XIX в. о наследственности и наследовании признаков создавались самые невероятные теории. Ученые лишь шаг за шагом приближались к истине, хотя и с другого направления. В 1875 г. Оскар Гертвиг описал процесс оплодотворения как соединение двух клеток. Обобщив исследования, касающиеся деления клеток, Август Вейсман назвал носителями наследственных свойств ядра клеток. Изучение хромосом привело к предположениям о том, как могут распределяться наследственные факторы между двумя клетками. Эти «цветные тельца» в клеточном ядре были открыты Фридрихом Антоном Шнейдером в 1873 г. Вскоре выяснилось, что у каждого определенного вида растений
В 1900 г. эти трое ученых опубликовали независимо друг от друга результаты исследований по скрещиванию растений. Чермак обнаружил забытую работу Менделя, и она была вновь напечатана в 1901 г. Вскоре после этого два цитолога, Уолтор Сеттен и Теодор Бовери, показали, что законы Менделя очень хорошо объясняют распределение хромосом при делении клеток. Так, медленно набирала темпы хромосомная теория наследственности.
В первое десятилетие нашего века развитие генетики происходило довольно бурно. Классический генетический анализ еще не был разработан, и в исследовании наследственности продолжал доминировать подход английской биометрической школы. Ее представители умело пользовались математической статистикой, но мало интересовались биологической стороной вопроса, они искали средние показатели количественных признаков и отклонения от них. Значительно позже стало понятно, что эти признаки определяются большим числом генов и их анализ методами классической генетики крайне затруднителен. Однако в 1908 г. это еще не было известно, и Карл Пирсон, основатель биометрической Школы в Англии, заявил, что нет окончательного доказательства применимости законов Менделя к какой-либо из существующих форм жизни. Обнаружились несоответствия и в других областях. В 1906 г. Уильям Бетсон и его сотрудник Р. Пеннет, исследуя парные признаки, установили, что их распределение не согласуется с законами Менделя. Молодая наука генетика попала в кризисную ситуацию.
Все эти противоречия были, в сущности, началом нового открытия. И его сделал Томас Морган, профессор экспериментальной зоологии Колумбийского университета в Нью-Йорке. Он сумел объединить данные статистики и результаты исследования процессов, происходящих в клетках. Морган приступил к экспериментам в области генетики в 1909 г. Прежде всего он обратился к своим коллегам по университету с просьбой помочь подыскать ему такое живое существо, которое могло бы быстро размножаться в ограниченном пространстве и при ограниченных затратах на него. Оказалось, что таким условиям полностью соответствует широко распространенная обыкновенная плодовая мушка — по-латыни «дрозофила меланогастер».
Небольшая лаборатория Моргана, названная «дрозофильной комнатой», вскоре заполнилась бутылками из-под молока, лабораторными колбами, пробирками и тому подобными вещами. Помещенная в колбу, пара дрозофил для полного счастья нуждается лишь в кусочке банана — и через 12 дней приносит потомство в 1000 особей. От небольшого количества эфира они засыпают, после чего их можно сортировать с помощью акварельной кисточки. Морфология дрозофилы исключительно богата: большое разнообразие форм волосков, крыльев, антенн, цвета глаз и т. п., что делает ее идеальным объектом для генетических исследований.
Изучая распределение наследственных признаков Морган столкнулся с тем же «взаимным, притяжением генов»,
Так Морган установил, что гены действительно находятся в хромосомах. Это открытие, объясняло противоречие, обнаруженное Бетсоиом и. Пенистом. Вскоре, однако, возникли, новые проблемы. Гены, о, которых было известно, что они принадлежат к одной группе, в следующих, поколениях, неожиданно оказывались в разных группах. Морган высказал предположение, что происходит, обмен генетическим материалом, между разными, хромосомами. Ему даже удалось, наблюдать этот процесс в. микроскоп:. две. хромосомы, сближались и скрещивались, обмениваясь фрагментами. Этот, процесс, получил название кроссинговера.
Морган представлял себе. гены, упорядоченными по длине хромосом, как. бусинки в. ожерелье. Экспериментальные данные привели его к замечательной идее о создании генетических карт. Очевидно, что, чем дальше находятся два гена друг от друга, тем больше вероятность обрыва, их связывающей нити и получения, новых сочетаний генов. Стало возможным определить относительное расстояние между генами в. хромосоме путем, простого вычисления процента кроссинговера. Впоследствии: была даже, введена единица измерения «моргай», соответствующая, одному проценту кроссинговера.
Замечательное открытие Моргана дало мощный толчок развитию генетики. Молодая наука обогатилась первыми теоретическими обоснованиями и получила признание в мире ученых. Одним из выражений такого признания бьют решение: профессоров из Каролинского института присудить в 1933 г. Нобелевскую, премию по физиологии, и медицине Моргану за создание хромосомной теории наследственности.
В опытах Моргана новая мутация случалась один раз на несколько тысяч дрозофил. С развитием концепции гена стало ясно, что в основе мутации лежат какие-то химические изменения в веществе — носителе наследственной информации. Этот вопрос был подробно изучен Г. Дж. Мёллером, который еще со студенческих лет начал работать в группе Моргана. Освоив в совершенстве методы работы с дрозофилами, он приступил к самостоятельному исследованию мутаций, их причин и возможностей получения искусственным путем.
Мёллер подвергал дрозофил различным воздействиям и уже в самом начале исследований установил, что число мутаций увеличивается с повышением температуры. Он вспомнил об известной из химии закономерности, а именно о том, что при нагревании скорость реакции возрастает, и решил искать другие, еще более сильные средства воздействия. Он начал с облучения мушек светом и наконец, в 1926 г., дошел до рентгеновских лучей. За год до этого Г.А. Надсон совместно с Г.С. Филипповым в Советском Союзе уже провели подобные опыты, подвергая дрожжи рентгеновскому облучению.
Эти эксперименты положили начало радиобиологии. Мёллер добился почти 100-процентной мутации в потомстве дрозофил, что в тысячи раз превышает частоту мутаций в естественных условиях. Так он осуществил мечту своей молодости — ускорить процесс эволюции, найдя способ вмешиваться в него. Метод получения искусственных мутаций был с восторгом встречен селекционерами. Уже в 1928 г. Л. Стедлер успешно применил его к кукурузе. В 30-е годы Н.В. Тимофеев-Ресовский, Макс Дельбрюк и другие крупные ученые создали теорию мишени, которая объясняла действие радиации.