Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Иногда мне возражают, что, поскольку критериидля этих суждений не являются в конце концов осознанными, то как я могу приписывать такие суждения сознанию? Однако, тем самым мои оппоненты упускают самую суть тех идей, которые я пытаюсь выразить. Ведь я не требую, чтобы мы осознавали, как мы формируем наши сознательные впечатления и суждения. Это привело бы к смешению тех уровней, о которых я только что упоминал. Истинные основаниянаших осознанных впечатлений наверняка будут недоступны сознанию. Они должны были бы рассматриваться на более глубоком (материальном) уровне по сравнению с первопричинами наших явных мыслей, которые мы непосредственно осознаем. (Ниже я осмелюсь предложить на рассмотрение одну интересную гипотезу на этот счет!) Собственно сознательные впечатления и являются(неалгоритмическими) суждениями.
Эта тема, затрагивающая вопрос о возможной неалгоритмическойсоставляющей механизма нашего
Я, однако, должен сразу же оговориться, что ни в коем случае не имею здесь в виду какое-то мистическое «ясновидение». Сознание абсолютно бесполезно при попытке угадать счастливое число в (честно проводимой) лотерее! Я имею в виду суждения, которые постоянно формируются человеком в сознательном состоянии, когда собираются воедино и сопоставляются все относящиеся к предмету размышлений факты, данные чувственного опыта, воспоминания — а в иную минуту вдохновения даже рождаются мудрые мысли. В принципе, мы располагаем достаточным количеством информации для того, чтобы вынести соответствующее суждение — но процесс его осмысленного формирования путем выделения необходимой информации из трясины фактов может просто не иметь точного выражения на языке алгоритмов (или же подобное выражение существует, но может оказаться при этом бесполезным практически). Возможно, мы находимся в ситуации, что когда суждение уже сделано, некоторый алгоритмический процесс (или просто более простое суждение) проверяет его справедливость, но не его изначальное формирование. В такой ситуации, как мне кажется, сознание «нашло бы себя» в роли создателя подходящих суждений.
Почему я утверждаю, что неалгоритмическое построение суждений является критерием наличия сознания? Отчасти я опираюсь здесь на свой опыт ученого-математика. Я просто не доверяю своим механическим действиям, если они не были сперва придирчиво исследованы сознанием. Часто сам по себе алгоритм, использующийся при определенных вычислениях, не вызывает сомнения — но тот ли алгоритм используется для решения данной конкретной задачи? Рассмотрим простой пример: если вас заставят вызубрить алгоритмы перемножения двух чисел и деления одного числа на другое (или даже разрешат использовать запрограммированный карманный калькулятор) — гарантирует ли это, что вы сможете определить в каждом конкретном случае, какое из этих действий приведет к решению поставленной перед вами задачи? Для этого нужно думать и строить осознанное суждение. (Вскоре мы увидим, почему такие суждения должны быть, по крайней мере иногда, неалгоритмическими!) Разумеется, коль скоро вы решите большое количество однотипных задач, выбор между умножением и делением станет настолько привычным, что будет выполняться совершенно автоматически — не исключено, что при участии одного лишь мозжечка. На этой стадии осознанное восприятие происходящего не является больше необходимым, поэтому можно спокойно позволить своему сознанию занять ум иными проблемами или просто «отпустить его в свободное плавание» — разве что время от времени проверяя ход выполнения алгоритма.
То же самое постоянно происходит на всех уровнях математического мышления. Люди часто стремятся найти адекватные алгоритмы, когда занимаются математикой, но само это стремление отнюдь не кажется алгоритмической процедурой. Как только подходящий алгоритм найден, задача, в некотором смысле, уже решена. Более того, определение с точки зрения математики степени точности или пригодности алгоритма требует значительных усилий со стороны сознания. Нечто подобное имело место при обсуждении формальных систем для математики, которые были описаны в главе 4. Если начать с формулировки нескольких аксиом, то затем из них можно вывести различные математические утверждения. Не исключено, что последняя операция может оказаться алгоритмической, но все же изначально математик должен осознанно решить вопрос об адекватности этих аксиом. Почему это решение с необходимостью будет неалгоритмическим, должно стать ясным из рассуждений, идущих непосредственно после следующего параграфа. Но прежде, чем мы перейдем к этому вопросу, давайте посмотрим, какая теория возникновения мозга и принципов его деятельности является на сегодняшний день наиболее популярной.
Естественный отбор алгоритмов?
Если предположить, что умственная деятельность человека — как осознанная, так и нет — это всего лишь выполнение очень сложного алгоритма, то сразу же возникает вопрос: а как, собственно, мог возникнуть такой в высшей степени эффективный алгоритм. Стандартным ответом здесь, разумеется,
Даже если судить сообразно моей точке зрения, некоторая доля истины в этой картине должна быть, поскольку, как мне представляется, большая часть работы мозга действительно носит алгоритмический характер, и к тому же — как читатель наверняка догадался из предыдущих рассуждений — я являюсь убежденным сторонником (теории) естественного отбора. Но я не понимаю, как естественный отбор сам по себе мог дать рождение алгоритмам, которые позволяли бы делать осознанные выводы касательно правомерностиприменения всех прочих алгоритмов, которыми мы должны, по идее, пользоваться.
Представьте себе обычную компьютерную программу. Как она появилась на свет? Ясно, что никак не за счет (непосредственно) естественного отбора! Чтобы это произошло, какой-нибудь программист должен был бы разработать ее и убедиться, что она корректно выполняет те действия, для которых она предназначена. (В действительности большинство сложных компьютерных программ содержат ошибки — как правило, незначительные и малозаметные, которые выявляются только в достаточно редких случаях при необычных стечениях обстоятельств. Наличие таких ошибок не влияет существенно на мои рассуждения.) Иногда компьютерная программа может быть «написана» другой компьютерной программой-«мастером», но тогда та, в свою очередь, с необходимостью должна быть создана человеческим гением; то же самое относится и к тем программам, в состав которых могут входить фрагменты кодов, написанных другими компьютерными программами. Но в любом случае, задача обоснования использования конкретного алгоритма и разработка общей концепции программы «ложится на плечи» (по крайней мере) одного человеческого сознания.
Можно представить себе, конечно, что все могло бы происходить совсем не так, и что по прошествии достаточного количества времени компьютерная программа могла бы самостоятельно эволюционировать в процессе некоего естественного отбора. Если верить, что действия, производимые в сознании программистов, сами являются всего лишь алгоритмами, то надо с необходимостью согласиться с тем, что таким же образом развилисьи алгоритмы. Но меня здесь беспокоит то, что принятие решения о правомерности использования алгоритма отнюдь не является алгоритмическим процессом. Кое-что об этом уже было сказано в главе 2. (Будет или нет машина Тьюринга на самом деле останавливаться— вопрос, который не может быть решен алгоритмическим путем.) Чтобы решить, будет ли алгоритм действительно работать, нужно глубокое понимание, а не просто еще один алгоритм.
Тем не менее, можно было бы представить себе, что существует определенный процесс естественного отбора, который способен создавать довольноэффективные алгоритмы. Лично мне, однако, очень трудно в это поверить. Любой процесс отбора такого рода мог бы оказывать воздействие только результатывыполнения алгоритмов [214] , а не на лежащие в основе этих алгоритмов идеи. И это не только совершенно неэффективно — я думаю, что это не принесло бы вообще никакого результата. Во-первых, нелегко определить, глядя на итог работы алгоритма, что он из себя на самом деле представляет. (Нетрудно сконструировать две простые, но совершенно различные процедуры для машины Тьюринга, выходные ленты которых совпадали бы, скажем, до 2 65536 – й позиции — и тогда их различие не было бы замечено даже за всю историю вселенной!) Более того, малейшая «мутация» алгоритма (например, небольшое изменение в описании машины Тьюринга или в ее выходной ленте) сделала бы ее полностью бесполезной; поэтому трудно понять, как настоящие усовершенствованияалгоритмов могут получаться таким вот случайным образом. (Даже обдуманныеусовершенствования труднореализуемы, когда неизвестен их точный «смысл». Так традиционно получается в тех нередко возникающих ситуациях, когда необходимо внести изменения или исправления в сложную и небрежно задокументированную программу, чей автор находится вне пределов досягаемости или давно умер. Тогда вместо того, чтобы пытаться разобраться в хитросплетениях разнообразных промежуточных значений и неявных подзадач, на которых базируется эта программа, иной раз бывает проще стереть все и начать заново!)
214
Здесь можно упомянуть еще один непростой вопрос относительно того, могут ли два алгоритма рассматриваться как эквивалентные друг другу, если результатыих действий — но не сами вычисления! — являются тождественными. См. главу 2, «Универсальная машина Тьюринга».