О чем рассказывает свет
Шрифт:
Первая тайна возникновения света в атомах была раскрыта. Физики были полны надежд, что скоро они раскроют и другие тайны: узнают, как движутся электроны в атомах, какие возможны колебания электронов и как эти колебания связаны с излучаемым светом, почему атомы испускают не одну, а много световых волн.
Обычно, исследуя новую область явлений, физики опираются на уже известные знания, на хорошо изученные и проверенные законы физики. Эти законы служат им надежным компасом в еще не изведанных областях природы.
Оказалось, что в области атомных явлений этот компас кое в чем стал отказывать.
В XIX веке в физике уже имелось, казалось бы, законченное учение о колебаниях. Согласно этому учению, всякое колеблющееся тело возбуждает волны той частоты, какова частота колебаний тела. Например, если струна колеблется с частотой 400 циклов, от нее идет звуковая волна той же частоты. Это — основной тон струны. Кроме основного тона, струна может одновременно издавать и другие тоны, так называемые обертоны. Частоты их в 2, 3, 4, вообще в целое число раз больше частоты основного тона.
Физики предполагали, что то же самое должно иметь место и в случае колебаний электронов в атомах. Если в атоме какого-либо элемента имеется один электрон, то между частотами излучений у таких атомов должны быть те же соотношения, что и у струны. Если же у атомов по нескольку электронов, то частоты их излучений должны представлять набор тонов и обертонов, аналогичный тому, какой имеет музыкальный инструмент с подходящим количеством струн. Так полагали физики на основе ранее известных теорий.
Что же оказалось в действительности?
Измерив частоты спектральных излучений у атомов различных элементов, физики стали изучать их. В спектре атомов водорода имеется около полусотни излучений. Но физики не нашли среди них таких, частоты которых относились бы друг к другу, как целые числа. Среди атомных излучений не нашлось «обертонов».
Зато был обнаружен другой закон — закон разностей частот. Вот, например, ряд частот излучений водородных атомов: 24,7·1014; 29,2·1014; 30,9·1014; 4,6·1014; 6,2·1014; 1,6·1014 (десятичные знаки в числах округлены). Если из второй частоты вычесть первую, то получится четвертая частота. В самом деле: 29,2·1014 — 24,7·1014 = 4,5·1014. Разность третьей и первой частот дает пятую частоту: 30,9·1014 — 24,7·1014 = 6,2·1014. Вычитание второй частоты из третьей приведет к шестой частоте. Ту же шестую частоту дает и разность пятой и четвертой частот.
Физика еще не знала таких соотношений частот; струна, например, их никогда не могла дать. Естественно, встал вопрос: применимы ли внутри атомов законы колебаний, которые до сих пор знала физика?
В чем же состоят особенности строения атомов?
Чтобы ответить на эти вопросы, нужно было прежде научиться производить опыты с самими атомами, проникнуть в их недра.
Но есть ли в природе такие орудия, которые позволили бы проникнуть в глубь атомов, размеры которых составляют доли ангстрема, т. е. стомиллионные доли сантиметра?
Составные части атомов
Орудия для проникновения
В 1896 году французские физики Анри Беккерель (1852—1908) и супруги Мария Кюри (1867—1934) и Пьер Кюри (1859—1906) открыли и исследовали явление радиоактивности некоторых тяжелых элементов. Атомы радиоактивных элементов выбрасывают из себя наряду с гамма-излучениями поток электронов и, кроме того, поток альфа-частиц. Каждая альфа-частица обладает положительным зарядом. По величине ее заряд вдвое больше, чем у электрона (про частицы с такими зарядами говорят просто: заряд равен двум). А по весу альфа-частица тяжелее электрона почти в 8 тысяч раз. Она в 4 раза тяжелее атома водорода и примерно равна по весу атому гелия.
Тяжелые, положительно заряженные альфа-частицы сыграли большую роль в исследовании атомов. Они оказались хорошими снарядами для проникновения в глубь атомов. В 1911 году английский физик Эрнест Резерфорд (1871—1937) обстрелял этими снарядами атомы многих веществ.
Обнаружились интересные свойства атомов.
Прежде всего подтвердились предположения физиков о том, что не только в атомах радиоактивных веществ, но и в атомах всех веществ имеются электроны, а следовательно, отрицательные заряды. В обычном состоянии атом является незаряженным или, как говорят, электрически нейтральным. Это потому, что в атоме есть не только отрицательные заряды, но и положительные, и они нейтрализуют друг друга. Альфа-частица, пролетая мимо электронов, выбивает их из атома. Тогда атом, потеряв один или несколько электронов, оказывается положительно заряженным. Такой атом называют ионом, а выбивание из атомов электронов — ионизацией.
Опыты показали, что частицы, составляющие атом, занимают чрезвычайно малую долю объема всего атома. Поэтому альфа-частицы, пролетая сквозь атом, лишь изредка налетают на положительный заряд. И тогда они отклоняются от своего пути и даже отбрасываются назад. Редкость такой встречи означает, что положительный заряд сосредоточен в атоме в очень небольшом объеме. Это так называемое ядро атома.
Физики стали сравнивать атом с солнечной системой. Ядро атома подобно Солнцу. Электроны подобны планетам; они обращаются вокруг ядра, как планеты вокруг Солнца.
Бомбардируя атомы различных веществ альфа-частицами, физики установили еще одно важное свойство атомов: чем тяжелее атом, тем больше заряд его ядра, тем больше у атома и электронов. Заряд ядра у водородного атома равен единице. И вокруг этого ядра обращается один электрон. Заряд ядра и число электронов у гелия равны 2, у лития — 3 и т. д.
Заряд ядра и число электронов у атома каждого элемента в точности совпадают с тем порядковым местом, которое этот элемент занимает в таблице Менделеева.
Итак, ученые проникли в мир атома, узнали его состав.
Однако знать, из чего состоят атомы, это еще не значит знать строение атома. Составные части атомов не свалены в кучу. Они взаимодействуют между собой по каким-то определенным законам. Познать строение атома — это означает познать закон взаимодействия составляющих его частей. Ведь каждый атом — это прочная, устойчивая система. Как же взаимодействуют между собой составные части атома, чтобы образовать такую систему?