Чтение онлайн

на главную

Жанры

О движении(Из истории механики)
Шрифт:

Гюйгенс исходил из одного-единственного положения, что два равных упругих тела, ударяющихся друг о друга с равными скоростями, отскакивают одно от другого с теми же скоростями. Сочинение, в котором выведены из этого положения законы соударения упругих тел, было опубликовано после смерти автора, в 1703 году.

Вот как, например, Гюйгенс вывел из этого положения один из законов соударения абсолютно упругих тел.

Представим себе, что на лодке, плавно идущей вдоль набережной, сталкиваются два равных упругих шара, движущихся с одинаковой скоростью навстречу друг другу. При этом скорости движения шаров (относительно лодки) и самой лодки одинаковы, а шары катятся

по линии, соединяющей корму с носом лодки.

Наблюдатель в лодке видит, что шары сближаются с одинаковой скоростью, а после удара покатятся каждый в обратном направлении.

Для наблюдателя с набережной тот из сближающихся шаров, движение которого по направлению обратно движению лодки, будет казаться неподвижным, а другой шар — движущимся к нему с удвоенной скоростью.

После удара, наоборот, шар, двигавшийся относительно наблюдателя на берегу, покажется остановившимся, а другой — катящимся с удвоенной скоростью.

Из этого опыта Гюйгенс вывел такое заключение: «если покоящееся тело ударяет другое равное тело, то это другое тело будет после удара покоиться, а покоившееся получит ту же скорость, какой обладало ударяющее».

В этом рассуждении Гюйгенс принял как неоспоримую истину, что соударение тел должно дать одинаковый результат как на судне, движущемся равномерно и прямолинейно, так и на суше, связав вывод своих законов с принципом относительности, установленным Галилеем.

Сделанный Гюйгенсом вывод, кажущийся парадоксальным, полностью оправдывается на опыте. Его справедливость подтверждается, например, при игре в бильярд упругими шарами из слоновой кости.

Когда катящийся шар ударяется о такой же покоящийся, то центры их сперва сблизятся. В этот момент, как и при ударе неупругих тел, оба шара должны бы получить половинную скорость первого из них в прежнем направлении.

Но упругость шаров сообщает каждому из них такую же скорость во взаимно противоположных направлениях. Поэтому ударивший шар остается на месте, так как его движение вперед парализуется толчком назад. А к половинной скорости шара, испытавшего удар, прибавляется еще такая же скорость от упругого толчка.

В результате ударивший шар останавливается, передав все количество своего движения другому шару, который приходит в движение со скоростью шара, нанесшего ему удар.

В рассмотренном случае оба шара имели одинаковую массу. Если их массы разной величины, то скорость ударяющего тела будет зависеть от соотношения масс.

Если масса ударяющего шара больше, чем покоящегося, то он не остановится, а будет двигаться в прежнем направлении, но с уменьшенной скоростью. Если же его масса меньше, чем покоящегося, то после удара он начнет двигаться в обратном направлении.

Тело, испытавшее удар, в обоих случаях движется в направлении ударяющего тела.

Гюйгенсу принадлежит и другая заслуга в теории удара. Он доказал, что при соударении абсолютно упругих тел сохраняется и сумма «живых сил», чего нет при ударе неупругих тел.

Выводы Гюйгенса подтвердились опытами Мариотта, устроившего для производства этих опытов специальный прибор. Ряд шаров из слоновой кости равных размеров был подвешен на нитях равной длины так, что шары соприкасались.

Отклонив крайний из них, отпускали его, чтобы он нанес прямой центральный удар в плоскости нитей. Тогда на другом конце ряда отскакивал один шар, поднимаясь на ту же высоту.

Это явление объясняется так: ударивший шар передает свое количество движения, или импульс [12] , крайнему шару, а сам останавливается; крайний шар передает этот импульс следующему, и так далее; наконец последний шар отскакивает.

12

Импульс характеризует действие силы в течение некоторого промежутка времени. Пусть сила f = ma (где а — ускорение) действует в течение времени t. Импульс силы ft = mat, но at = v и ft = mv, то-есть импульс равен количеству движения в конце времени t.

Гюйгенс доказал, что при соударении упругих тел передается как импульс, так и «живая сила». Отскочивший шар обладает тем же импульсом и той же «живой силой», как и шар, нанесший удар.

Воображаемый опыт Гюйгенса (соударение тел).

Но что произойдет, если удар нанесут два шара? Опыт показывает, что в этом случае отскакивают два шара — иначе не могли бы сохраниться одновременно и количество движения и кинетическая энергия.

Например, если бы мог отскочить один шар с вдвое большей скоростью, то количество движения осталось бы неизменным. Зато «живая сила» отскочившего шара была бы вдвое больше, чем у двух шаров, нанесших удар, что невозможно.

Удар действует в течение чрезвычайно короткого времени, сообщая, однако, заметное, а иногда и значительное ускорение. Если бы его действие продолжалось секунду, то ускорение было бы очень велико.

Но сила измеряется произведением массы на ускорение. Значит, сила удара огромна. Этим пользуются при забивании гвоздей и свай, при рубке топором и других работах.

Практически невозможно определить ускорение, сообщаемое ударом в течение чрезвычайно короткого времени. Поэтому нельзя определить и силу удара как произведение массы тела на ускорение.

Измерению доступна только скорость, сообщенная ударом телу. Поэтому о силе удара судят по количеству движения. В этом особенность так называемых мгновенных сил.

Изучение удара тел имело большое значение в технике. На законах соударения тел основан, например, баллистический маятник, долгое время применявшийся для измерения скорости движения ядер при вылете из орудия.

Баллистический маятник представлял собой подвешенный массивный ящик с большим котлом внутри, наполненным песком. Выброшенное из орудия в горизонтальном направлении ядро попадает в котел и останавливается в песке. Баллистический маятник приходит в движение и, откачнувшись, поднимается на некоторую высоту.

По высоте поднятия маятника над уровнем, когда он висел спокойно, можно вычислить скорость, сообщенную ему снарядом. Она равна v = 2gh, — гдеh высота, на которую поднялся маятник [13] . Зная высоту h, легко находим и v.

13

Поделиться:
Популярные книги

Не грози Дубровскому! Том VII

Панарин Антон
7. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VII

Дайте поспать! Том II

Матисов Павел
2. Вечный Сон
Фантастика:
фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать! Том II

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Проклятый Лекарь. Род II

Скабер Артемий
2. Каратель
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Проклятый Лекарь. Род II

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Лорд Системы 3

Токсик Саша
3. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 3

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX