Об интеллекте
Шрифт:
Мы говорили ранее о пространственных и временных паттернах, но имеет смысл освежить вашу память, поскольку мы будем ссылаться на них очень часто. Вспомните, что ваш кортекс — это большой слой нервной ткани, который содержит функциональные области, специализированные на определенных задачах. Эти области соединяются большими связками аксонов или волокон, которые передают информацию от одного региона к другому, все одновременно. В любой момент времени некоторое множество волокон возбуждается электрическим импульсом, называемым потенциалом действия или спайком, тогда как другие остаются неактивными. Коллективная активность связки волокон и есть то, что обозначает паттерн. Паттерн, поступающий в V1,
Как отмечалось ранее, примерно три раза в секунду ваши глаза совершают быстрое движение, называемое саккадой, и остановку, называемую фиксацией. Если ученый подключит устройство, отслеживающее движение глаз, вы будете удивлены, какими отрывистыми являются саккады, хотя ваше визуальное ощущение непрерывно и стабильно. Рисунок 2 показывает, как у некоторого человека движутся глаза, когда он смотрит на лицо. Заметьте, что фиксации не произвольны. Теперь вообразите, что вы могли бы видеть паттерн активности, поступающие в V1 от глаз этого человека. Он меняется постоянно с каждой саккадой. Несколько раз в секунду кортекс видит совершенно новый паттерн.
Вы могли бы подумать, «хорошо, но это все еще то же самое лицо, просто смещающееся». В этом есть доля правды, но не так много, как вы думаете. Светочувствительные рецепторы в вашей сетчатке распределены неравномерно. Они плотно сконцентрированы в фовеальной области в центре, и постепенно редеют к периферии. В отличие от этого клетки кортекса распределены равномерно. В результате изображение с сетчатки, отображаемое в первичную визуальную область V1, сильно искажено. Когда ваши глаза фиксируются на носу, а не на глазу того же самого лица, картинка значительно отличается, как если бы ее рассматривали через искажающие линзы, которые постоянно дергаются туда-сюда. Но когда вы видите лицо, оно не кажется вам искаженным, и не кажется прыгающим. Большую часть времени вы даже не осознаете, что паттерны с сетчатки полностью изменяются. Вы видите «просто лицо». (Рисунок 2б показывает этот эффект на примере берегового ландшафта). Это подтверждение загадки инвариантного представления, о котором мы говорили в главе 4. То, что вы воспринимаете — это не то, что видит V1. Как же все таки ваш мозг узнает, что он видит одно и то же лицо, и почему вы не знаете, что поступающая информация изменяющаяся и искаженная?
Рисунок 2а. Как глаза совершают саккады по человеческому лицу.
Рисунок 2б. Искажение, вызванное неравномерным распределением рецепторов по сетчатке.
Если мы поместим электроды в V1 и будем наблюдать, как отвечают отдельные клетки, мы обнаружим, что каждая конкретная клетка возбуждается только в ответ на визуальную информацию от крошечной части сетчатки. Этот эксперимент был проделан много раз и является опорным в исследовании зрения. Каждый нейрон в области V1 имеет так называемое рецептивное поле, которое сильно специфично для каждой мельчайшей части общего поля зрения — то есть, цельного мира перед вашими глазами. Представляется, что клетки в V1 совсем не знают о лицах, машинах, книгах или других значительных объектах, которые вы видите все время; они «знают» о крошечных, с игольное ушко, порциях визуального мира.
Каждая клетка в V1 также настроены на специфические виды поступающих паттернов. Например, конкретная клетка может активно пульсировать, когда она видит линию или край, наклоненный под углом в 30 градусов. Эти края сами по себе имеют небольшое значение. Они могли бы быть частью любого объекта — половицы, стволом отдаленного пальмового дерева, стороной буквы М или одной из почти бесконечного числа возможностей. При каждой новой фиксации, рецептивное поле клетки попадает на новую и совершенно
Однако, нечто волшебное происходит, если вы помещаете электрод в верхнюю область, показанную на рисунке 1, область IT. Здесь мы обнаруживаем некоторые клетки, которые становятся и остаются активными, когда объект полностью появляется где-нибудь в поле зрения. Например, мы могли бы найти клетки, которые возбуждаются только тогда, когда видно лицо. Эти клетки остаются активными до тех пор, пока ваши глаза видят лицо где-нибудь в поле вашего зрения. Они не включаются и не выключаются при каждой саккаде, как это делают клетки в V1. Рецептивное поле этих клеток в IT покрывает большую часть визуального пространства и настроено на возбуждение, когда видно лицо.
Давайте откроем тайну. Походу охвата четырех кортикальных этапов от сетчатки до IT, клетки изменяются от быстро изменяющихся, пространственно специфичных, распознающих крошечные кусочки ячеек, до постоянно возбужденных, пространственно неспецифичных, распознающих объекты. Клетки в IT говорят нам, что мы видим лицо где-то в поле нашего зрения. Эти клетки, называемые обычно нейронами лица, будут возбуждаться независимо от того, наклонено ли лицо, повернуто ли, или частично загорожено. Это часть инвариантного представления для «лиц».
Написать эти слова кажется так просто. Четыре коротких этапа, и Вуаля, мы узнали лицо. Ни одна компьютерная программа или математическая формула не решает эту задачу с надежностью и общностью, близкой к человеческому мозгу. Но мы знаем, что мозг решает ее за несколько шагов, так что ответ не может быть сложным. Одна из основных целей этой главы объяснить, как получаются нейроны лица, нейроны Билла Клинтона или другие. Мы доберемся до этого, но мы должны охватить сначала много другого.
Взглянем на рисунок 1 по-другому. Вы видите, что информация также течет от высших областей к низшим через сеть обратных связей. Эти связки аксонов, которые идут от областей вроде IT к низшим областям вроде V4, V2 и V1. Более того, обратных связей много, если не больше, чем прямых.
Много лет ученые игнорировали обратные связи. Если ваше понимание мозга сфокусировано на том, как кортекс принимает информацию, обрабатывает ее и затем действует на ее основе, вам не нужны обратные связи. Все что вам нужно — это прямые соединения, ведущие от сенсорных областей кортекса к моторным. Но когда вы начинаете понимать, что функция кортекса — предсказание, то вам необходимо ввести в модель обратные связи; мозг должен посылать поступающую информацию обратно к областям, которые получили информацию первыми. Предсказание требует сравнения того, что происходит и того, что вы ожидаете. То, что действительно происходит идет вверх, то, что вы ожидаете идет вниз.
Те же самые прямые и обратные процессы возникают во всех областях кортекса, задействованных во всех органах чувств. На рисунке 3 рядом с визуальной стопкой блинчиков изображены похожие стопки для слуха и осязания. Там также изображена чуть более высшая кортикальная область, ассоциативная, которая получает и интегрирует информацию от нескольких различных органов чувств. Тогда как рисунок 1 основан на знании соединений между четырьмя известными областями кортекса, рисунок 3 чисто концептуальная диаграмма, не пытающаяся охватить действительные кортикальные области. В реальном мозгу человека масса кортикальных областей соединены различными способами. Фактически, большая часть человеческого кортекса состоит из ассоциативных областей. Анимированная характеристика, показанная здесь и на следующих рисунках, предназначена для того, чтобы помочь вам понять, что происходит, не вводя сильно в заблуждение.