Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов
Шрифт:
Очистка металлических расплавов от растворённых водорода и азота называется также дегазацией. Удаление из расплавов растворённого кислорода называется раскислением. Этот последний процесс ввиду его специфичности рассматривается далее отдельно.
На использовании явления уменьшения растворимости газов при снижении температуры металла основано снижение газонасыщенности сплавов путём простой предварительной переплавки с последующей кристаллизацией, когда полученный расплав разливают в чушки, используемые уже для приготовления рабочего сплава.
Дегазация металлических расплавов очень часто достигается путём продувки расплавов инертными или активными газами, а также обработкой расплавов летучими соединениями (главным образом, хлоридами). Во всех случаях процесс дегазации основан на диффузии растворённого газа из расплава
При дегазации расплавов продувкой газами или обработкой летучими веществами вопросом первостепенной важности становится содержание примесей в используемых газах и веществах, главным образом влаги, азота, кислорода [1].
Кроме того, было показано [6], что при кристаллизации жаропрочных никелевых сплавов с повышенной концентрацией азота в отливках может образовываться значительная микропористость. Это приводит к снижению свойств сплава.
При исследовании закономерностей поведения азота при выплавке монокристаллического жаропрочного сплава ЖС30-ВИ была установлена [4] зависимость между содержанием в сплаве азота и формой выделяющихся при кристаллизации сплава нитридов и карбонитридов: при повышенном содержании азота – выше 0,001 % (фактически 0,0014–0,0027 %) – образуются довольно крупные карбиды округлой или полиэдрической формы, а при низком содержании азота (0,0005–0,0007 %) формируются тонкодисперсные игольчатые вытянутые карбиды.
В монокристаллах сплава ЖС30-ВИ в пределах рассмотренного содержания азота имеется прямая зависимость: чем меньше содержание азота, тем больше число циклов до разрушения при испытаниях на МЦУ. При повышении содержания азота от 5 до 20 ppm среднее число циклов до разрушения уменьшается в 1,5 раза.
Приведённые результаты исследований указывают на крайнюю актуальность работ, направленных на обеспечение предельно низкого содержания газов и таких вредных примесей, как сера, фосфор, кремний и др.
Важнейшими процессами рафинирования безуглеродистых сложнолегированных расплавов никеля, используемых в качестве шихты заготовок для монокристаллического литья лопаток современных газотурбинных двигателей, являются десульфурация, дефосфорация и деазотация металла в зависимости от окислительного и восстановительного потенциалов вакуумной индукционной плавки [7].
Физико-химическими особенностями процессов рафинирования расплава во время окислительного периода плавки являются одновременное протекание процессов плавления матричного металла (никеля) и растворения легирующих компонентов (Co, Mo, W, Re и др.), а также образование первичного и вторичного шлака после введения в расплав закиси никеля [8]. В результате из расплава в газовую фазу удаляется сера в виде SO2, в шлаковую фазу – фосфор в виде аниона РО43-, и за счёт флотации пузырьками СО, образующимися при реакции обезуглероживания металлического расплава, – азот в виде N2. Очевидно, что все эти процессы связаны со свойствами поверхности реагирующих фаз, в т. ч. с поверхностью металлического расплава.
С точки зрения процессов рафинирования металлов и сплавов законы термодинамики определяют направление протекания процессов рафинирования: какое количество энергии при этом будет выделяться или поглощаться, каково соотношение концентрации (активностей), при которой наступает состояние равновесия, и каковы возможные конечные состояния в зависимости от внешних условий.
Химическая же кинетика позволяет ответить на вопросы, будет ли достигнуто за приемлемый промежуток времени состояние, предсказанное
В гетерогенных реакциях кинетика связана с термодинамикой для процессов, протекающих на границе раздела фаз, условия равновесия которых предсказывает термодинамика.
Раскисление металлических расплавов означает удаление из них растворённого кислорода. Раскислению подвергают лишь расплавы, где кислород присутствует именно в растворённом виде. Поэтому сплавы на основе никеля при плавке обязательно раскисляют.
Раскисление может быть осуществлено несколькими способами. Наиболее универсальным способом является осадочное или глубинное раскисление, при котором в расплав, содержащий растворённый кислород, вводится элемент-раскислитель R, образующий соединения с кислородом, нерастворимые в расплаве. В обобщённом виде происходящий процесс может быть описан реакцией: [O]Me + [R]Me <--> RO. Главное условие осадочного раскисления заключается в том, чтобы реакция была сильно сдвинута вправо, в сторону образования оксида RO. Это обеспечивается большой отрицательной величиной свободной энергии Гиббса указанной реакции. Отличительная особенность осадочного раскисления состоит в том, что этот процесс приводит к загрязнению расплава продуктами реакции в виде частиц оксидов RO, являющихся типичными эндогенными докристаллизационными включениями. Их удаление из расплава требует соответствующего внимания.
Подобного недостатка лишено так называемое контактное раскисление, при котором кислород либо переходит в специально наводимый на расплав шлак в виде оксида расплавляемого металла МеО, либо связывается на поверхности нерастворимого твёрдого раскислителя в оксид, также нерастворимый в расплаве. Раскисление через шлак широко применяется в металлургии как начальная ступень удаления кислорода, после которого проводится глубинное осадочное раскисление добавками марганца, кремния, кальция, алюминия. В этих случаях в качестве раскислителя используют углерод в виде графита или карбида кальция. Раскисление проходит по реакции [O]Me + C -> CO. Продуктом раскисления является монооксид углерода, пузыри которого легко уходят в атмосферу. Контактное раскисление, большое достоинство которого состоит в том, что расплав не загрязняется неметаллическими включениями, отличается малой скоростью и требует для своего завершения десятков минут, т. к. поступление кислорода к поверхности, где идёт реакция, хотя и осуществляется конвекцией в макромасштабе, у самой границы расплав-раскислитель реализуется только за счёт диффузионного массопереноса.
Для некоторых сплавов раскисление достигается при плавке в достаточно глубоком вакууме. Для этого необходимо, чтобы остаточное давление в вакуумной камере было в несколько раз меньше равновесного парциального давления кислорода, определяемого необходимым минимальным его содержанием в расплаве.
На практике, как правило, пользуются комплексными раскислителями, состоящими из нескольких металлов и элементов.
Так, никель раскисляют углеродом и магнием. Одно из преимуществ комплексных раскислителей состоит в том, что остаточное содержание каждого из составляющих оказывается в расплаве небольшим, тогда как общее снижение содержания кислорода достигается суммарным действием всех элементов и металлов, входящих в состав комплексного раскислителя.
Термодинамические расчёты показывают принципиальную пригодность данного элемента как раскислителя. Технология приготовления сплавов требует решения вопроса об удалении из расплава продуктов раскисления. Наилучшие условия для этого создаются, когда продукты раскисления газообразны. Именно поэтому углерод очень часто используется как раскислитель для тех металлов, где это возможно [1].
Одной из важнейших реакций, протекающих в жидкой металлической ванне в условиях пониженного давления газовой фазы, является реакция взаимодействия углерода с кислородом, который может находиться в металле в растворённом состоянии или в виде окисных неметаллических включений.