Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов
Шрифт:
Магний заметно снижает диффузионную подвижность атомов при рабочей температуре сплава, что находится в полном соответствии с результатами испытаний на жаропрочность. Исследования микроструктуры сплава ЖСбКП без магния и с магнием показали, что после нагрева при температуре 1000 °С (без приложения нагрузки) в течение 1000 ч в металле с магнием сохраняется более мелкая и тонкая ’-фаза, чем в металле без магния.
Исследования с использованием электронного микроскопа разрушенных образцов из сплава ЖСбКП без магния и с магнием показали, что магний задерживает коагуляцию ’-фазы в сплаве при рабочих температуре и напряжении и стабилизирует структуру. Это обеспечивает повышение
При микроструктурном исследовании после травления в течение 0,3 мин различий в состоянии границ зёрен металла без магния и с магнием не наблюдали. Однако при более продолжительном воздействии реактива границы зёрен в металле с магнием растравились меньше (особенно после травления в течение 90 мин), т. е. границы зёрен в этом случае имели большую химическую устойчивость к воздействию кислот, что в свою очередь указывает на способность магния замедлять диффузионную подвижность атомов по границам зёрен при высокой температуре, т. е. дополнительно упрочнять границы.
В соответствии с работой [10] для получения сплавов с высокими показателями жаропрочности и пластичности в металле должно быть около 0,01 % Mg.
Магний является поверхностно-активным элементом и распределяется в металле по границам зёрен и в междендритных участках, а также на поверхностях раздела фаз.
Металл с магнием имеет пониженную диффузионную подвижность атомов; такой металл менее подвержен разупрочнению при рабочей температуре и напряжении.
Окись магния может восстанавливаться алюминием уже при содержании алюминия в металле около 0,1 %, поэтому с точки зрения термодинамики длительная выдержка в индукционной вакуумной печи жаропрочных сплавов, содержащих алюминий, нежелательна.
Введение церия совместно с алюминием является эффективным средством рафинирования металла от кислорода. Особое значение это имеет для сплавов с высоким содержанием хрома, в которых активность углерода понижена из-за наличия хрома [1].
Любой технологический процесс, который может привести к удалению оксидных и нитридных включений или предотвратить их образование, очевидно важен для окончательной чистоты получаемого продукта.
Как показывает отечественный и зарубежный опыт, получить высококачественные лопатки с бездефектной монокристаллической структурой возможно только при использовании для их отливки сплавов с ультранизким содержанием в них вредных примесей углерода, серы, фосфора, кремния и газов – кислорода и азота. Это обусловлено тем, что образующиеся с участием указанных элементов соединения (карбиды, сульфиды, фосфиды, оксиды, нитриды) выделяются внутри монокристалла и являются, с одной стороны, концентраторами напряжений, инициирующими зарождение трещин, а с другой стороны, источником гетерогенного зарождения равноосных «паразитных» зёрен, что существенно снижает прочностные характеристики и стабильность свойств монокристаллов, а также выход годных лопаток. Так, при содержании в сплаве 0,0025–0,0030 % азота выход годных лопаток по бездефектной монокристаллической структуре составляет всего 50–60 %; при снижении содержания азота в этом сплаве до уровня 0,0006–0,0007 % выход годных лопаток повышается до 80–90 %.
В случае снижения суммарного содержания газов (кислорода и азота) в жаропрочном сплаве для монокристаллического литья с 0,005 до 0,002 % его долговечность при испытании на длительную прочность увеличивается в 1,5–2,0 раза; снижение содержания углерода в этом сплаве с 0,02 до 0,005 % позволяет увеличить его долговечность в 2–3 раза. Отрицательное влияние серы, кроме образования в сплаве сульфидов, проявляется также
В отличие от жаропрочных сплавов, отливаемых методом равноосной кристаллизации, при которой имеет место объёмная кристаллизация и, соответственно, большая протяжённость границ зёрен, при получении монокристаллических отливок, в которых границы зёрен отсутствуют, кристаллизация расплава происходит однонаправленно – в направлении теплового потока; при этом примеси концентрируются перед плоским фронтом кристаллизации и нарушают его устойчивость, что приводит к появлению дефектов в монокристалле [11].
Таким образом, жаропрочные сплавы с монокристаллической структурой более чувствительны к примесям, чем сплавы с равноосной структурой, что связано с особенностями их структурообразования.
Большой интерес представляет механизм удаления водорода и азота из жидкого металла. При рассмотрении выделения из жидкого металла в вакууме необходимо учитывать газовыделение через стенки тигля.
В работе [2] представлена следующая схема удаления водорода и азота из жидкого металла:
1. Перенос растворённых атомов азота или водорода в объёме жидкого металла, включающий массопередачу, благодаря конвективным потокам и диффузии через непромешиваемый слой на границе раздела фаз. Перенос атомов азота и водорода осуществляется из объёма металла к границам раздела: металл – футеровка, металл – газовая атмосфера над металлом, металл – газовые пузырьки, находящиеся в металле.
2. Адсорбция атомов азота и водорода в поверхностном слое:
[Н] -> Надс; [N] -> Naдc.
3. Рекомбинация адсорбированных атомов азота и водорода на поверхности раздела в газовые молекулы по реакции:
Надс + Надс = Н2адс; Nадс + Nадс = N2адс.
4. Десорбция газовых молекул.
5. Отвод молекулярного азота и водорода в газовую фазу, в т. ч. всплывание пузырьков в металле, отвод газа от поверхности металла в результате работы вакуумных насосов.
Повышение температуры и понижение давления в печи значительно ускоряют процесс дегазации и обеспечивают достижение более низких остаточных содержаний водорода и азота.
Более низкое значение скорости дегазации в алундовом тигле по сравнению с магнезитовым объясняется тем, что алундовый тигель более плотный, дегазация идёт преимущественно с поверхности ванны, в то время как при плавке в магнезитовом тигле газ может уходить и через его стенки.
Необходимо считаться и с тем, что наличие в металле хрома, ванадия, ниобия, титана понижает коэффициент активности азота в расплаве и тем самым прочнее связывает азот в растворе. С другой стороны, присутствие углерода и кремния повышает активность азота и способствует его удалению. Удалению азота мешает также и то, что он обладает низким коэффициентом диффузии по сравнению с водородом (DN = l – 4 · 10– 4 см2/сек).