Обеспечение высокого качества литых заготовок современных сложнолегированных жаропрочных никелевых сплавов
Шрифт:
При взаимодействии углерода с кислородом образуются газообразные продукты СО и СО2; в вакууме эта реакция протекает значительно полнее, чем при атмосферном давлении. При выделении пузырьков СО и СО2 не только происходит раскисление и обезуглероживание металла, но и создаются благоприятные условия для выделения водорода, азота, всплывания неметаллических включений.
Реакцию обезуглероживания в общем виде можно записать следующим образом:
[C] + x[O] = Acox, (1)
где х свидетельствует о том, что в этом
Дальнейшие исследования показали, что за равновесное давление СО следует принимать величину этого параметра в газовом пузырьке, образующемся в той части жидкого расплава, в которой происходит выделение СО из объёма металла, окружающего пузырик.
А это давление больше, чем давление остаточного после вакуумирования газа над поверхностью расплава на удельную величину веса столба жидкого расплава от поверхности до образующегося пузырька, а также ту часть давления в пузырьке, которое нейтрализует поверхностное натяжение.
При переплаве твёрдого металла в вакуумно-индукционных печах большая часть кислорода в виде окиси углерода выделяется во время расплавления, азот удаляется в течение всей плавки, удаление водорода происходит в основном из жидкого металла в первой половине выдержки жидкого металла в вакууме. Необходимо учитывать также возможное удаление водорода из твёрдого металла во время его нагрева.
При переплаве отходов выделяется значительно меньше газов и в других соотношениях, чем при выплавке сплава на свежих материалах.
Очевидно, что раскисление становится совершенно необходимым, если сплав готовится из чистых металлов, и оказывается совершенно ненужным, если проводится простая переплавка готового сплава.
Подбор раскислителей, расчёт их количества, время и способ введения в расплав определяются составом сплава, набором исходных шихтовых материалов, применяемым оборудованием. Расчёты на основе термодинамики, физической химии, механики являются основой для решения технологических вопросов, но не могут заменить саму технологию, требующую обязательного практического опробования.
Раскислители, как это видно из изложенного ранее, представляют собою очень активные по отношению к кислороду и нередко летучие элементы. Поэтому для их введения применяют лигатуры.
Исследования, проведённые в последнее время, показали, что удаление растворённого кислорода из никелевых сплавов, т. е. их раскисление, в определённой мере происходит в процессе фильтрования расплава. Физическая сущность этого явления заключается в следующем. После ввода в расплав раскислителей должна пройти реакция с образованием новых фаз – продуктов раскисления. Образование новых фаз в расплаве требует определённого пересыщения и проходит во времени. В процессе фильтрования вся масса расплава протекает через поры фильтрующего материала, который может выполнить роль готовых центров образования оксидных фаз – продуктов раскисления, если этот материал обладает соответствующей кристаллической структурой. Поскольку продуктами раскисления являются обычно силикаты, то фильтр, состоящий из динаса или шамота, вполне способен быть активной подложкой, на которой из пересыщенного раствора могут возникать частицы продуктов раскисления [1].
Наиболее надёжный способ дегазации металлических расплавов, т. е. рафинирования от растворённых газов, заключается в их вакуумировании, хотя для этого необходимо сложное технологическое оборудование: вакуумные камеры или стенды, насосы, измерительная аппаратура.
Все процессы дегазации вакуумированием основаны на законе Сивертса, показывающем зависимость содержания газа в растворе от его давления над расплавом: [Г] = kрг2. По существу, вакуумирование происходит при простой выдержке приготовленного расплава. В самом деле, если при открытой плавке использовались недостаточно хорошо просушенные материалы или, например, катоды меди или никеля, насыщенные при электролизе водородом, то в расплаве окажется какое-то количество растворённого водорода [Н], для которого равновесное давление будет равно рН2 = [Н]2/k2. При выдержке такого расплава в атмосфере сухого воздуха, где парциальное давление водорода практически равно нулю, должен неизбежно пойти процесс перехода водорода из расплава в атмосферу. Этим явлением иногда пользуются для удаления большого избытка водорода из расплавов.
Процесс дегазации расплавов вакуумированием осуществляется созданием над расплавом разрежения или помещением расплава в специальную камеру с остаточным давлением 10–1000 Па. В таких условиях расплавы, содержащие газы, «закипают», в них образуются пузыри водорода, азота, монооксида углерода, которые всплывают на поверхность и создают видимость кипения. Этот процесс сопровождается активным падением содержания растворённых газов. Через несколько минут «кипение» прекращается, одновременно заканчивается активное снижение содержания газов [1].
С целью повышения эффективности процессов рафинирования и дегазации жаропрочных сплавов при осуществлении вакуумно-индукционной плавки в нашей стране и за рубежом были опробованы различные перспективные технологии.
Преимущественной задачей при вакуумно-индукционной плавке является не допустить окисления активных легирующих элементов типа Al, Ti, Zr и Hf. В дополнение к этому необходимо обеспечить испарение вредных летучих элементов типа висмута, свинца и селена, которые присутствуют обычно в сырье и которые существенно снижают механические свойства в жаропрочных сплавах.
На содержание оксидов и нитридов в плавке влияют:
1) используемые для плавки шихтовые материалы;
2) реакции, которые могут произойти в течение времени, пока материал находится в тигле.
В вакуумно-индукционной плавке, где используются первичные шихтовые материалы, общей практикой является рафинирование неактивных элементов (Ni, Со, Cr, Mo, W, Та и т. д.), прежде чем вводятся активные элементы (Ti, Al, Hf, Zr), которые легко поглощают растворённый кислород и образуют оксиды (Al2O3, HfO, ZrO2) и нитриды (TiN).