Обитаемые космические станции
Шрифт:
На пути создания крупных ракет-носителей с РДТТ для выведения орбитальных станций еще много нерешенных проблем. К ним относят, например, увеличение мощности и продолжительности работы, уменьшение удельного веса РДТТ. Существующие РДТТ могут работать, как правило, не больше 30–40 сек. Для выведения на орбиту тяжелой ОКС этого времени явно недостаточно. Его требуется увеличить по крайней мере в три-четыре раза. Правда, увеличение времени работы двигателя потребует интенсивного охлаждения стенок камеры и сопла двигателя. Здесь нет жидкого топлива, с помощью которого охлаждаются камеры сгорания ЖРД, поэтому требуются специальные системы охлаждения. В качестве эффективного способа может быть использовано испарение какого-либо металла, в жидком состоянии
При создании РДТТ большой мощности конструкторы сталкиваются с чрезвычайно большими весами, затрудняющими транспортировку двигателей к месту старта.
На помощь приходит так называемое секционирование, т. е. двигатель собирается из отдельных секций непосредственно на пусковой площадке. Учитывая кратковременность работы РДТТ, их выгоднее применять на первых ступенях космических ракет-носителей [32]. Один из зарубежных проектов вывода на орбиту высотой 560 км орбитальной станции весом 13,3 т предусматривает применение РДТТ в качестве стартовых двигателей ракеты-носителя «Титан-3». Каждый из двух пятисекционных двигателей длиной 21 м, диаметром около 4,5 м и весом около 250 т разовьет тягу около 600 т и будет работать 1,5 мин.
Способ секционирования, как отмечается в американской печати, даст возможность создать РДТТ с огромной тягой — до 4000 т и более. Конечно, это снова приведет к определенным трудностям. Транспортировка секций, сборка и установка таких двигателей на ракете будут очень сложны, ведь вес двигателей достигнет многих сот тонн при длине до 100 м и диаметре около 10 м.
В последнее время исследуется возможность использования для выведения спутников на орбиту воздушно-реактивных двигателей (ВРД), получивших широкое применение в авиации. Считают, что применение ВРД снизит стартовый вес ракеты-носителя, поскольку в качестве окислителя будет использоваться атмосферный воздух. Кроме того, появится возможность использовать подъемную силу крыла, так как траектория полета будет довольно пологой. Следует помнить о том, что при возвращении на Землю ступени с ВРД с целью ее повторного использования не понадобятся дополнительные тормозные установки, а может быть, и парашюты. Для спуска и посадки потребуется лишь небольшой запас топлива.
Предварительные расчеты некоторых ученых показывают, что из всех типов ВРД наиболее подходящими для данной цели являются прямоточные, а также комбинированные двигатели — ракетно-прямоточные и турборакетные. Обыкновенные турбокомпрессорные ВРД, установленные на первой ступени, не дадут выигрыша в стартовом весе и вряд ли будут когда-нибудь использоваться при выведении больших орбитальных станций.
Как известно, прямоточные ВРД не могут работать на месте и при малых скоростях полета. Однако на скоростях, соответствующих числам М от 2 до 6, эти двигатели очень эффективны до высот 40 км. В связи с этим их предлагают устанавливать на второй ступени многоступенчатой ракеты-носителя.
В одном из опубликованных в печати проектов [26] рассматривается трехступенчатая ракета, у которой первая и третья (последняя) ступени работают на жидком топливе, а вторая ступень имеет крылья и снабжена прямоточными двигателями. Жидкостные двигатели первой ступени поднимают ракету на высоту 12 км, одновременно разгоняя ее до скорости 300 м/сек. На этой скорости запускаются прямоточные двигатели второй ступени, обеспечивающие разгон ракеты до 4000 м/сек по относительно пологой траектории. В конце работы второй ступени ракета достигает высоты около 30 км. С этой высоты начинает работать третья ступень, траектория полета ракеты становится более крутой, а отделившаяся вторая крылатая ступень плавно снижается и производит посадку на Землю.
Практическая реализация подобных
Как известно, при использовании ЖРД на борту ракеты-носителя необходимо иметь два компонента топлива — горючее и окислитель. В этом отношении большой интерес представляет ядерный ракетный двигатель (ЯРД), который работает на однокомпонентном рабочем теле, а главное, дает высокую удельную мощность. По своей схеме такой двигатель отличается от ЖРД только тем, что нагрев его рабочего тела происходит не в камере сгорания, а в ядерном реакторе (рис. 13). При этом отпадает одно из препятствий для получения высоких скоростей истечения, свойственное ЖРД, для которого очень важно удачно выбрать сочетание компонентов топлива. Чем легче топливо, чем меньше его молекулярный вес, тем больше можно получить скорость истечения из двигателя. В ЯРД можно применять рабочее тело с самым малым молекулярным весом, например водород или гелий. К сожалению, максимальная температура рабочего тела, от которой также зависит скорость истечения и тяга двигателя, ограничена стойкостью применяемых ядерных и конструкционных материалов. Поэтому вопросы охлаждения занимают здесь еще более важное место, чем в ЖРД.
Известно, что чистый уран плавится при температуре 1130 °C, а это явно недостаточно для ракетного двигателя. Если в качестве активной массы реактора применять окись урана (температура плавления 2750 °C), то можно получить достаточно эффективный ЯРД с твердыми тепловыделяющими элементами. Но и такая температура не предел для ЯРД. Рассматривается возможность создания реакторов с жидкими тепловыделяющими элементами, позволяющими нагревать рабочее тело до температур намного выше 3000 °C. Наиболее высокая температура нагрева может быть получена в так называемом газофазном реакторе (температура выше 3500 °C) [13].
По соображениям безопасности для экипажа ракеты с ядерным двигателем необходимо иметь мощную антирадиационную защиту, что, конечно, в значительной мере увеличит стартовый вес. И еще одно условие: в целях предотвращения загрязнения атмосферы радиоактивными продуктами реактивной струи ядерный двигатель желательно включать лишь на значительной высоте. Эти недостатки делают применение такого двигателя на первой ступени ракеты неудобным и крайне нежелательным. Хотя в настоящее время ядерные ракетные двигатели находятся в стадии разработки, тем не менее многие проекты ракет-носителей для выведения ОКС предусматривают их применение. Так, по американскому проекту «Ровер» на третьей ступени ракеты-носителя «Сатурн» С-2 предполагается установить ядерный двигатель, что позволит вывести на орбиту высотой 560 км ОКС весом 31 т.
В зарубежной печати встречаются также сообщения о проектах очень мощных ракет на ядерном горючем для выведения сверхтяжелых орбитальных станций. Например, проект под условным названием «Антарес» задуман с целью исследования возможности выведения на орбиту полезного груза весом до 2500 т, а проект «Альдебаран» имеет целый создание космических систем для запуска орбитальной станции весом 30 000 т. Сейчас эти цифры кажутся нам совершенно фантастическими, но разве не фантастикой казалась еще недавно возможность посылки почти тонны полезного груза к Марсу?