Обитаемые космические станции
Шрифт:
Идея использования гравитационных сил для стабилизации ОКС возникла при изучении видимых колебаний Луны вокруг ее центра тяжести (либрации). Оказалось, что Луна стабилизирована относительно Земли довольно точно за счет весьма небольшого отличия ее формы от сферической. Анализ влияния гравитационного поля на спутники Земли показывает, что положение ОКС будет устойчивым, если ось минимального момента инерции направить по вертикали к поверхности Земли, а ось максимального момента расположить перпендикулярно плоскости орбиты станции. Интересно, что космическая станция, выполненная по форме в виде гантели, т. е. обладающая распределением масс, характерным для гравитационного диполя, будет самостабилизироваться в поле действия силы тяжести Земли. На орбите такая станция будет всегда стремиться занять положение, при котором
Возможности стабилизации ОКС с использованием магнитного поля, при котором роль диполя должна играть катушка с электрообмоткой, ограничены еще меньшими значениями располагаемых восстанавливающих моментов. К тому же такой способ стабилизации применим для сравнительно узкого класса орбит, определяемого формой земного магнитного поля.
В качестве компенсирующего фактора в пассивных стабилизирующих системах можно использовать аэродинамическое сопротивление конструкции ОКС. Для обеспечения устойчивости центр приложения результирующей силы давления должен лежать позади центра масс спутника (смотря по направлению движения), причем величина восстанавливающего эффекта тем больше, чем больше площадь поверхности ОКС и расстояние между центром масс и центром давления. Естественно, что аэродинамическая стабилизация применима лишь до определенных высот орбиты. Предельной высотой считают 500 км [24], где давление воздуха меньше 1,5*10–8г/см2.
Возможности стабилизации с помощью светового давления, конечно, еще меньше, поскольку давление солнечного излучения вблизи Земли весьма незначительно. Расчеты показывают, что для компенсации небольшого возмущения за счет светового давления потребуется не менее получаса. Тем не менее считается, что такой способ может найти применение для компенсации моментов от вращающихся в процессе работы деталей оборудования и приборов.
Практически способы стабилизации с помощью пассивных методов будут, по-видимому, использованы при создании вспомогательных устройств; дополняющих работу других, более эффективных стабилизирующих систем ОКС.
Такие системы могут использовать лишь активные методы стабилизации, в которых восстанавливающий момент создается за счет энергии, получаемой или запасенной на борту ОКС. К таким методам относится стабилизация с помощью вращающихся маховиков и стабилизация реактивными соплами.
В системе стабилизации маховиками, предложенной для космических аппаратов еще К.Э.Циолковским, используется инерционное свойство вращающегося тела сохранять неизменной свою ориентацию. Известно, что, чем выше угловая скорость вращения тела и чем больше его момент инерции, тем устойчивее положение этого тела в пространстве. Таким образом, в данной системе восстанавливающим фактором служит момент вращения маховика. Раскрутка и поддержание заданной скорости вращения маховика должны производиться электромоторами небольшой мощности, питающимися от бортовой системы энергоснабжения. Три таких маховика с осями, Расположенными во взаимно-перпендикулярных направлениях, обеспечивают полную трехосевую стабилизацию спутника по тангажу, рысканию и крену (рис. 14).
Для усовершенствования системы можно взять три отдельных маховика, каждый из которых создается восстанавливающий момент только вокруг одной оси, а один сферический маховик с асинхронным электродвигателем, имеющим три взаимно-ортогональные обмотки. Сферическому маховику не нужны подшипники: подвеску можно осуществить либо с помощью магнитного
Но возможности системы с маховиками по максимуму величины восстанавливающего момента далеко не безграничны и определяются предельной скоростью вращения маховиков. Поэтому реакция такой системы стабилизации на очень большие возмущения может оказаться недостаточной.
Активная система стабилизации реактивными соплами является наиболее эффективной и уже используется на практике. Восстанавливающий момент в этой системе возникает при выбросе массы рабочего тела из сопла небольшого реактивного двигателя, ось которого не проходит через центр масс космического корабля или ОКС. Восстанавливающий момент зависит от скорости истечения и массового расхода рабочего тела, а также от размера плеча, на котором приложена сила тяги двигателя. Рабочим телом могут служить как обычные продукты сгорания химического топлива, так и просто пар или воздух. Конечно, пар или воздух дают относительно низкие скорости истечения, поэтому расход и запасы на борту таких однокомпонентных рабочих тел будут довольно значительными. Вообще, учитывая необходимость в расходе рабочего тела, такие системы можно считать пригодными лишь для кратковременного действия. С другой стороны, система с двигателями может давать очень большие величины восстанавливающих моментов и довольно быстро реагировать на неожиданные импульсы возмущающих моментов. Поэтому для длительно существующих ОКС такая система будет очень удобной, придется лишь периодически пополнять запасы рабочего тела, транспортируя его с Земли.
Для стабилизирующей системы длительного действия можно применить плазменные или ионные двигатели, способные развивать высокие скорости истечения при небольших расходах рабочего тела. Для таких двигателей нужно будет иметь дополнительные ресурсы электроэнергии на борту ОКС.
Как будет осуществляться стабилизация ОКС с помощью двигателей? Для полной стабилизации по тангажу, рысканию и крену необходимо иметь по крайней мере шесть пар реактивных двигателей, расположенных так, как показано на рис. 15, При появлении какого-либо возмущения включается определенная пара двигателей, создающая момент, компенсирующий возмущение. Например, если аппарат почему-либо начинает накреняться вокруг оси х в направлении, указанном стрелкой, то включится пара двигателей 1–1. При действии момента в противоположном направлении работают двигатели 1'-1'. Аналогично компенсируются моменты вокруг осей y и z.
При одновременном возникновении возмущений вокруг всех трех осей запускаются три соответствующие пары двигателей контроля. Так, если действуют сразу три момента вращения, изображенные на рис. 15 стрелками, то необходимо включить пары двигателей 1–1, 2' -2' и 3–3.
Приведем некоторые конкретные данные о подобной системе, предназначаемой, по одному из иностранных проектов, для стабилизации 12-тонной ОКС. Каждый из реактивных двигателей работает на химическом разложении однокомпонентного жидкого топлива — перекиси водорода — и развивает тягу 10 кг. Потребный расход топлива в среднем около 12 кг перекиси в день при обычных возмущениях и около 36 кг в день при компенсации толчков в период швартовки прибывающих ракет. Чувствительность системы по тангажу и рысканию ±1,2° и по крену ±3°. Общий вес системы оценивается примерно в 300 кг [18].
Мы рассказали о различных способах стабилизации орбитальных космических аппаратов. Какому же из них можно отдать предпочтение при создании ОКС?
Пока еще нельзя ответить на этот вопрос совершенно определенно. Видимо, ОКС обязательно будет иметь активную систему стабилизации, которая будет быстро и точно реагировать на любые внешние или внутренние возмущения, а также позволит быстро и надежно изменять ориентацию станции по команде оператора.
Активная система будет дополнена пассивными методами стабилизации, если конструкторы ОКС заранее позаботятся о рациональном распределении масс и надлежащем выборе геометрической формы станции.