Обитаемые космические станции
Шрифт:
Однако для поддержания жизнедеятельности человека внутри герметической кабины совершенно недостаточно иметь лишь атмосферное давление воздуха и нужное количество кислорода. Внутри космического корабля должен поддерживаться такой климат, к которому человек привык на Земле, т. е. определенный диапазон изменения влажности и температуры воздуха.
Такой искусственно созданный и автоматически поддерживаемый климат был в кабинах советских космических кораблей. Напомним, что в кабине корабля «Восток-5» состав воздуха, давление, влажность и температура поддерживались в заданных пределах почти пять суток. Таким же и даже более высоким требованиям будут удовлетворять рабочие и жилые отсеки ОКС, в которых помещения для экипажа будут намного больше по объему, а время поддержания нормального для человека
Физиологическая классификация зон указывает и на то, что на высотах более 36 км интенсивно действует ионизирующая радиация — первичные космические лучи, на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра и на высотах более 120 км — интенсивные метеорные потоки.
Можно представить себе любую другую классификацию зон околоземного пространства. Следует лишь оговориться, что каждая из этих классификаций, как и предыдущие, является условной и неокончательной. В частности, можно рассматривать техническую классификацию зон атмосферы.
По мере подъема на все большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные всем явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение подъемной силы и сопротивления, передача тепла конвекцией и др.
В верхних, разреженных слоях воздуха, где длина свободного пробега частиц становится соизмеримой с длиной волны звуковых колебаний, распространение звука оказывается невозможным. До высот порядка 60–90 км еще возможно использование сопротивления и подъемной силы воздуха для управляемого аэродинамического полета. Но начиная с высот 100–130 км знакомые каждому летчику понятия числа М и «звукового барьера» теряют свой смысл, хотя при больших скоростях полета там еще можно применить аэродинамическое крыло. На высотах же 180–200 км начинается сфера чисто баллистического полета, управлять которым можно лишь используя реактивные силы. Если при таком полете развивается центробежная сила, равная силе тяжести на данной высоте, то наступает состояние так называемой динамической невесомости и летательный аппарат становится искусственным спутником Земли.
На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию обычной конвекцией. Это означает, что различные элементы оборудования аппаратуры ОКС не смогут охлаждаться так, как это делается обычно на самолете, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является радиационное излучение. Известно, что полет с большой скоростью в нижних слоях атмосферы связан с очень сильным конвективным нагревом носовой части и обшивки летательного аппарата, возникающим в результате трения о молекулы воздуха. При полете же на высотах 130–160 км нагрев обшивки от трения о воздух становится ничтожно малым.
Итак, где же, начинается собственно космос — свободное межпланетное пространство в «чистом» виде?
Едва ли на этот вопрос можно ответить вполне определенно. На схеме рис. 22 показаны все три рассмотренные нами классификации зон околоземного пространства — физическая, физиологическая и техническая. Интересно, что при подъеме на высоту особенно быстро начинается космос для физиологов — с высоты 19 и даже 15 км. Правда, на этих высотах проявляются лишь отдельные свойства космической среды. Поэтому зону от 19 до 200 км физиологи считают частично эквивалентной космосу.
Конечно, и выше 200 км космос все же отличается от межпланетного пространства, так как еще сказывается влияние близости Земли. Радиационные пояса Земли распространяются на многие десятки тысяч, а гравитационные и магнитные поля — на многие сотни тысяч километров.
Радиация. Пожалуй, одной из самых больших опасностей,
С биологическим действием ионизирующей радиации: люди впервые столкнулись более полувека назад после открытия естественной радиоактивности. Однако серьезным изучением влияния радиации на живые организмы ученые занялись лишь в недавнее время в связи с бурным развитием атомной техники.
Предельно допустимая доза облучения для человека не должна превышать 0,3 рентгена в неделю или 15 рентген в год. Предельной для человека дозой при кратковременном облучении считают 600 рентген. В связи с необходимостью длительного пребывания человека на борту ОКС или в далеком космосе ученые ищут эффективные средства защиты от ионизирующей радиации. Такой защитой, возможно, будут специальные экраны — поглотители и отражатели космических частиц. Ученые ведут также усиленные поиски специальных препаратов, способных в случаях сильного облучения предотвратить или хотя бы задержать развитие лучевой болезни.
При проектировании ОКС будет учитываться влияние космической радиации не только на организм человека, но и на материалы конструкции и оборудование. Исследования показали, что радиация почти не действует на металлы, но в условиях вакуума способна вызывать деполимеризацию пластмасс, нарушающую их структуру. Процесс деполимеризации сопровождается обычно выделением газа, обесцвечиванием, повышением хрупкости и электропроводности, уменьшением сцепляемости частиц пластических материалов.
Известную опасность радиация представляет и для полупроводниковых приборов — транзисторов.
Мы уже упоминали об околоземных поясах радиации, образованных магнитным полем Земли (см. рис. 6). Это главный источник опасных излучений для экипажа ОКС. Радиационная «оболочка» Земли состоит из трех зон, или поясов — внутреннего, внешнего и самого внешнего.
Первый — внутренний пояс радиации — как бы охватывает земной шар вдоль геомагнитного экватора. Он состоит из частиц с высокой энергией — протонов. Относительно центра Земли этот пояс, как и порождающее его магнитное поле, расположен несимметрично: в западном полушарии нижний край его опускается до высоты 600 км, в восточном — поднимается до 1600 км. В некоторых местах (например, в южной части Атлантического океана) повышенная радиация начинается на еще меньших высотах — 350–400 км, что объясняется влиянием местных магнитных аномалий. По широте внутренний пояс распространяется примерно на 20° к северу и на 20° к югу от экватора. Интенсивность потока заряженных частиц в нем переменна по высоте: с подъемом на каждые 100 км она удваивается и достигает максимального значения на высоте 3000 км. Ионизирующее действие радиации внутреннего пояса вызывают главным образом протоны, которые могут создавать максимальную дозу, равную 50-100 рентгенов в час. Создать надежную защиту при такой дозе радиации можно, лишь применяя очень толстые экраны, вес каждого погонного сантиметра которых, по оценке американских специалистов, на современном уровне техники может составлять до 80 г.
Второй — внешний пояс радиации, — открытый советскими учеными, расположен на высотах от 9000 до 45000 км. Он намного шире внутреннего (распространяется на 50° к северу и на 50° к югу от экватора) и также обладает переменной интенсивностью. Максимальная доза, создаваемая внешним поясом за один час, может составить громадную величину — до 10000 рентген. Однако проблема защиты от радиации внешнего пояса будет, по всей вероятности, менее сложной, чем проблема защиты от радиации внутреннего пояса. Дело в том, что внешний пояс состоит в основном из частиц сравнительно невысокой энергии — электронов, от которых могут неплохо защитить даже обычные материалы обшивки космического корабля. Если же применить довольно тонкие свинцовые экраны, то эту дозу можно снизить в тысячи и десятки тысяч раз.