Одураченные случайностью. Скрытая роль шанса в бизнесе и жизни
Шрифт:
Я завершаю главу, представляя главный парадокс всей моей работы в области финансовой случайности. По определению, я иду против течения, так что не должно стать сюрпризом, что мой стиль и методы не могут быть ни популярными, ни легкими для понимания. Но я оказался перед дилеммой: с одной стороны, я работаю с людьми в реальном мире, а с другой — реальный мир населен не только болтливыми и, в конце концов, ничего не значащими журналистами. Поэтому мне бы хотелось, чтобы люди в целом оставались одураченными случайностью (и я мог бы торговать против них), тем не менее чтобы сохранялось умное меньшинство, способное оценить мои методы и воспользоваться моими услугами. Другими словами, мне нужно, чтобы люди были одурачены случайностью, но при этом не все. Мне повезло познакомиться с Дональдом Сассменом, который оказался идеальным партнером, он помог мне на втором этапе карьеры, вылечив от болезни под названием «работа по найму». Мой главный
Глава 3
Размышления о математической истории
О методе Монте-Карло как метафоре для понимания последовательности случайных исторических процессов. О случайности и фальшивой истории. Возраст красив почти всегда, а новое и юное обычно ядовито. Запишите вашего историка на курсы по альтернативной истории для начинающих.
Существует стереотипный образ математика: анемичный человек с косматой бородой и длинными грязными ногтями, тихо работающий за спартанским, неприбранным письменным столом. У него неразвитые мышцы и круглый живот, он сидит в захламленном кабинете, с головой погрузившись в работу, и, очевидно, не замечает убожества окружающей его обстановки. Он вырос при коммунистическом режиме, говорит хриплым голосом, с сильным восточноевропейским акцентом. Не так давно американское общество столкнулось с подобным персонажем в лице Унабомбера [20] , бородатого математика, жившего отшельником в ветхой хижине и убивавшего людей, которые занимались продвижением современных технологий. Ни один из журналистов не смог даже приблизиться к пониманию его диссертации на тему «Комплексные границы», поскольку она никак не связана с практической жизнью (сущность комплексного числа полностью абстрактна, это воображаемое число, включающее в себя квадратный корень из минус единицы, у него нет аналогов за пределами мира математики).
20
Прозвище, данное ФБР Теду Качинскому, совершившему в 1975–1995 серию терактов, направленных против ученых и бизнесменов, чья деятельность наносила вред окружающей среде. Прим. перев.
Название «Монте-Карло» ассоциируется с легкими порывами средиземноморского бриза, огнями казино и образом загорелого столичного жителя из когорты европейских плейбоев. Этот человек живет в высотных апартаментах, играет в теннис, но не откажется и от партии в шахматы или бридж. Он водит спортивный автомобиль стального цвета, носит отутюженные костюмы от итальянских кутюрье, осмотрительно и гладко говорит о тех скучных, но реальных вещах, которые журналист может легко описать публике понятными словами. А в казино он умело считает карты, анализирует шансы и делает осмысленные ставки, для которых его мозг выдает расчет оптимальной суммы. Этакий умный брат Джеймса Бонда.
Когда я думаю о математическом методе Монте-Карло, то мне кажется удачным сочетание качеств этих двух людей: реализм игрока в казино без его поверхностности в соединении с интуицией математика без излишней абстрактности. На самом деле этот метод имеет огромное практическое значение, и в нем нет математической сухости. Я попал в зависимость от него в ту самую минуту, когда стал трейдером. Он повлиял на мои мысли по всем вопросам, связанным со случайностью. Большинство примеров в книге смоделированы с помощью описанного в этой главе генератора Монте-Карло. Это средство не столько для расчетов, сколько для анализа. Да и вообще математика — скорее способ размышления, нежели вычисления.
Инструменты
Обсуждение альтернативных вариантов истории, начатое в предыдущей главе, можно продолжить и подкрепить технически. Речь идет об инструментах, которые я использую в своей профессии для игры с неопределенностью. Чуть позже я опишу их в двух словах. Если коротко, то метод Монте-Карло заключается в формировании искусственной истории. Для начала рассмотрим несколько понятий.
Первыми разберем выборочные траектории. У невидимых вариантов истории есть научное название — «альтернативные выборочные траектории», этот термин позаимствован из раздела теории вероятности, посвященного стохастическим процессам. Исследование траектории, а не результата означает, что речь идет не об анализе сценариев «в стиле МВА», а об изучении последовательности сценариев во времени. Нас интересует не где птица переночует завтра, а какие места она может посетить к этому моменту. Нас беспокоит не то, сколько инвестор заработает, скажем, за год, а, скорее, сколько раз за это время у него сожмется сердце от колебаний цен. Выборка и предполагает рассмотрение одного из возможных исходов. Выборочная траектория может быть заданной или случайной, это не одно и то же.
«Случайной выборочной траекторией» в математике называется последовательность модельных исторических событий, имеющая начало и конец, а также заданный уровень неопределенности. Слово «случайный» не следует ошибочно считать синонимом слова «равновероятный» (то есть имеющий одинаковую вероятность). У некоторых исходов вероятность будет выше. Регулярное измерение температуры у вашего родственника, заболевшего в экспедиции брюшным тифом, — иллюстрация случайной выборочной траектории. В качестве примера можно привести также симуляцию цен на акции вашей любимой компании из сектора высоких технологий, определяемых ежедневно на момент закрытия торгов в течение, скажем, одного года. Начавшись со 100 долларов, в одном из сценариев эта цена приходит в итоге к 20 долларам с максимумом в 220 долларов; в другом она поднимается до 145 долларов при минимуме в 10 долларов. Еще один пример — динамика вашего состояния в течение вечера в казино. Вы начинаете с 1000 долларов в кармане и считаете деньги каждые пятнадцать минут. По одной выборочной траектории у вас к полуночи будет 2200 долларов, по другой вы едва наскребете 20 долларов на такси.
«Стохастическим процессом» называется последовательность событий, происходящих во времени. Стохастика — красивое греческое название случайности. Этот раздел теории вероятности посвящен изучению последовательности случайных событий, его можно назвать «математической историей». Главная характеристика процесса состоит в его протяженности во времени.
Так что же такое генератор Монте-Карло? Представьте, что у себя на чердаке вы создали идеальную рулетку, не прибегая к услугам столяра. Можно написать компьютерную программу, симулирующую практически все, что угодно. Она будет даже лучше (и дешевле), чем колесо рулетки, созданное вашим знакомым мастером, поскольку не будет предпочитать одно число остальным за счет перекоса конструкции или неровности пола (этот недостаток называется «смещением»).
С тех пор как я стал взрослым, ничто не напоминало мне игрушку так сильно, как симуляции методом Монте-Карло. Можно создать тысячи, миллионы случайных выборочных траекторий и изучить их особенности и доминирующие характеристики. Основным помощником в этом исследовании является компьютер. Гламурная отсылка к Монте-Карло подчеркивает метафору — вы симулируете случайные события по примеру виртуального казино. Нужно задать набор условий, соответствующих реальности, и начать вычисление возможных последовательностей событий. Без особых познаний в математике с помощью этого метода можно симулировать ситуацию, в которой восемнадцатилетний ливанский подросток-христианин последовательно играет в «русскую рулетку» на заданную сумму, и увидеть, сколько попыток приведут к обогащению или как долго в среднем он сможет играть, пока не попадет на кладбище. Мы можем предположить, что в барабане 500 гнезд, — тогда вероятность смерти уменьшится — и посмотреть, что из этого выйдет.
Впервые симуляции методом Монте-Карло использовались военными физиками в лаборатории Лос-Аламос во время подготовки к испытаниям атомной бомбы. Этот метод стал популярным инструментом финансовой математики в восьмидесятые годы, особенно в свете теории случайных блужданий цен на активы. Конечно, для случая с «русской рулеткой» такой аппарат не нужен, но для решения многих задач, особенно отражающих ситуации из реальной жизни, требуется его мощь.
Математика метода Монте-Карло
Истинные математики не любят метод Монте-Карло, это факт. Они уверены, что его использование заслоняет всю красоту и элегантность их науки, и называют этот метод грубой силой. Зачастую симуляцией Монте-Карло (и другими компьютерными хитростями) мы можем заменить свои знания математики. Например, любой человек без особых познаний в геометрии может таинственным, почти мистическим способом рассчитать число пи. Как? Нарисовать круг, вписанный в квадрат, и «стрелять» в картинку случайным образом (как в аркадных играх), при этом вероятность попадания в любую точку картинки одинакова (это иногда называют равномерным распределением). Частное от деления количества «пуль», попавших внутрь круга, на количество «пуль» за его пределами даст число пи с точностью до почти бесконечного числа знаков после запятой. Ясно, что это не самый эффективный способ использования компьютера, ведь число пи можно рассчитать аналитически, применяя математические формулы, но описанный метод позволяет некоторым пользователям понять тему интуитивно, а не с помощью строчек уравнений. Многим людям (к ним отношусь и я) легче усвоить материал именно таким способом (так устроены их разум и интуиция). Возможно, компьютер чужд человеческому мозгу, как и математика.