Чтение онлайн

на главную

Жанры

Оптический флюорит
Шрифт:

Выращивание кристаллов флюорита должно обязательно проводиться в герметизированной аппаратуре в инертной атмосфере или в вакууме. Вместо вытягивания кристалла осуществляется медленное опускание вращающегося тигля с расплавом. Хороших результатов по выращиванию кристаллов флюорита этим методом добились, например, К. Рао и А. Смакула.

В условиях вакуума, используя для уменьшения потерь на испарение давление аргона в 250 мм рт. ст. и добавляя в шихту около 2% PbF2, они получили совершенные флюоритовые були диаметром 20 мм и длиной 40 мм.

Метод зонной плавки. Этот метод для получения монокристаллов флюорита, легированных редкоземельными элементами, применил Г. Гуггенхейм [Вильке, 1977]. Он

проводил зонную плавку флюорита в защитной фтористоводородной атмосфере в графитовой лодочке, проходящей через нагреватель со скоростью 2,5—30 см/ч. Были выращены кристаллы оптического качества размером 2,5x2,5x2,5 см.

Метод Чохральского. Кристаллы оптического флюорита теперь можно получать и методом Чохральского, который если и не так удобен, как метод Стокбаргера, но широко распространен и освоен многими лабораториями. Этот метод близок к методу Наккена—Киропулоса. Так же из расплава вытягивается затравка, но кристаллизация происходит не в самом расплаве, а в мениске расплава под затравкой, несколько возвышающемся над его уровнем. Одновременно с вытягиванием из расплава растущий монокристалл вращается вокруг вертикальной оси; в результате получаются симметричные цилиндрические кристаллы, довольно совершенные и очищенные от примесей. Очистка от примесей в процессе роста кристалла — это очень важное преимущество метода Чохральского.

Аппаратура для выращивания кристаллов методом Чохральского очень разнообразна. Для получения кристаллов оптического флюорита необходима вакуумная аппаратура. Флюоритовый расплав удерживается в молибденовых, платиновых, иридиевых или графитовых тиглях под защитой аргона или азота. Нагревание высокочастотное. Вытягивание затравки осуществляется со скоростью 1,2—15 см/ч, вращение затравки — 14—60 об/мин, вращение тигля — до 20 об/мин. Кристаллы получаются длиной 25—100 мм и диаметром 3—12 мм.

Обеспечение качества искусственных кристаллов оптического флюорита

Первые искусственные кристаллы оптического флюорита были лучше природных, пожалуй, только прочностными характеристиками. Они обладали несколько большей твердостью, меньшей хрупкостью, не растрескивались и не распадались на мелкие осколки при 300—350° С, как природные, стойко выдерживали нагрев до температуры плавления флюорита.

Но по оптическим свойствам, т. е. по тем, которые и определяют уникальность флюорита как оптического материала, искусственные кристаллы значительно уступали природным. Они характеризовались более узким волновым диапазоном пропускания в УФ-области и даже в видимой части спектра имели полосы поглощения, выражающиеся в густой красно-фиолетовой окраске. Кристаллы, как правило, сильно люминесцировали. Неприятные следствия порождали пузырность, блочность кристаллов, остаточные напряжения и другие дефекты. Надо было найти способы устранения этих дефектов.

Спектральное пропускание. Область спектрального пропускания первых искусственных кристаллов была уже, чем природных, интенсивность пропускания во всем спектральном диапазоне значительно ниже. В УФ-области кристаллы были совершенно непрозрачны и непригодны для ультрафиолетовой техники, да и видимая область характеризовалась наличием нескольких полос поглощения. Только в ИК-области качество искусственных кристаллов было достаточно хорошим. И еще одно неприятное обстоятельство: кристаллы отличались удивительно сильной фотохимической чувствительностью, они легко окрашивались под действием ультрафиолетового, рентгеновского и -облучения.

И. В. Степанов и П. П. Феофилов в результате проведенных ими исследований пришли к выводу, что эти нежелательные особенности искусственных кристаллов не связаны с вхождением примесей, а обусловлены структурными дефектами, возникающими в процессе роста и вызванными нарушением стехиометрического соотношения кристаллообразующих атомов в условиях высоких температур, вакуума и больших скоростей роста кристаллов. Это дефекты типа F2центров, представляющих собой спаренные электроны, локализованные в соседних вакантных анионных узлах решетки. И. В. Степанов и П. П. Феофилов предложили оригинальный способ «нейтрализации» этих дефектов путем введения в расплав добавок посторонних веществ, которые могли бы служить акцепторами электронов. В природном флюорите эту роль играют трехвалентные ионы редкоземельных элементов, замещающие двухвалентные ионы кальция. Их попытались ввести и в искусственные кристаллы. Были выращены бесцветные кристаллы CaF2 с добавками малых количеств фторидов редкоземельных элементов (около 10– 2 %), обладающие более высокой прозрачностью в УФ-области, фотохимически устойчивые.

Однако были и исключения: в ряде случаев вырастали все же малопрозрачные кристаллы. Исследования спектров люминесценции показали, что при одном и том же исходном составе в зависимости от условий выращивания в кристаллах CaF2 образуются структурные дефекты разных типов. Если в кристаллизующемся расплаве присутствует кислород, то компенсация избыточной валентности при замещении Ca2+ ионом TR3+ осуществляется за счет иона кислорода O2-, и ион TR3+ не способен осуществлять свои электронно-акцепторные функции. В случае же выращивания в восстановительной среде, без доступа воздуха, компенсация за счет кислорода невозможна, и захват избыточных электронов происходит на ионах TR3+, что сдерживает образование F и F2– центров окраски. Поэтому рекомендуется добавлять в шихту в небольшом количестве (0,1 вес. %) графитовый порошок. Выращенные в таких условиях кристаллы по пропусканию не уступают природным.

В дальнейшем П. Гёрлих с сотрудниками [G"orlich et al., 1961] предложили заменить трехвалентные TR3+ четырехвалентными катионами металлов, а Э. Г. Черневская показала, что лучший результат достигается при добавке 1% SrF2.

Более поздними исследованиями было установлено, что в улучшении светопропускания кристаллов в УФ-области очень большую положительную роль играет высокий вакуум, поддерживаемый в процессе роста. Й. Йиндра и Й. Филип [1965] выращивали кристаллы при вакууме не менее 10– 5 мм рт. ст. и добились у полученных образцов тех же значений пропускания, что и у кристаллов с акцепторной примесью. Они пришли к выводу, что из чистейшего сырья в высоком вакууме можно получать высококачественные кристаллы без добавки редкоземельных или каких-либо других акцепторных примесей.

В поисках путей повышения светопропускания кристаллов проводились опыты по выращиванию кристаллов флюорита во фторсодержащей атмосфере [Воронько и др., 1965; Черневская, 1969]. Фторирование — очень эффективный способ повышения оптических свойств искусственных кристаллов.

Включения. Качество искусственных кристаллов часто снижали включения, вызывающие светорассеяние, снижение прозрачности, появление окраски. Включения по сравнению с природными кристаллами имеют более мелкие размеры, но плотность их распределения значительно более высокая и отрицательные эффекты от их присутствия более серьезные.

Можно выделить три типа включений.

Первый тип — мельчайшие частички неизоморфной фазы, чаще всего CaO, беспорядочно рассеянные по объему кристалла и обусловливающие изотропное светорассеяние. Снижение их количества достигается введением в шихту раскислителей.

Второй тип — закономерно ориентированные по плоскостям (111) гексагональные таблички посторонней фазы размером 10—20 мкм, образующиеся в результате распада твердого раствора и вызывающие анизотропное светорассеяние. Их появления можно избежать использованием особо чистой шихты.

Поделиться:
Популярные книги

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2