Органическая химия
Шрифт:
Однако двойная связь карбонильной группы существенно отличается от двойной связи этиленовых углеводородов. Главное отличие заключается в том, что двойная связь карбонильной группы соединяет атом углерода с электроотрицательным атомом кислорода, сильно притягивающим электроны, поэтому эта связь сильно поляризована.
Наличие в карбонильных группах альдегидов и кетонов сильно поляризованной двойной связи – причина высокой реакционной способности этих соединений и, в частности, причина многочисленных реакций присоединения.
Название «альдегиды» произошло от общего способа получения этих соединений: альдегид можно
В зависимости от характера радикала различают предельные или непредельные альдегиды, ароматические альдегиды и т. д.
Альдегиды наиболее часто называют по тем кислотам, в которые они превращаются при окислении. Так, первый представитель альдегидов Н-С(О) – Н называется муравьиным альдегидом (или формальдегидом), так как при окислении превращается в муравьиную кислоту (AСldum formicum); следующий гомолог СН3 —С(О) – Н называется уксусным альдегидом (или ацетальдегидом), так как при окислении он дает уксусную кислоту (AСldum aceticum) и т. д.
Простейший ароматический альдегид С6Н5 —С(О) – Н называется бензойным альдегидом или бензальдеги-дом, так как при окислении дает бензойную кислоту (AСldum benzoicum).
По международной номенклатуре названия альдегидов производят от названий соответствующих углеводородов, прибавляя к ним окончание – ал. Так, например, муравьиный альдегид называется ме-танал, уксусный альдегид – этанал, бензойный альдегид – фенилметанал.
Изомерия альдегидов обусловлена изомерией цепи радикала.
46. Способы получения альдегидов
1. Окисление первичных спиртов – важнейший способ получения альдегидов:
1) окисление спирта дихроматом калия применяется преимущественно в лабораторных условиях, например для получения уксусного альдегида;
2) окисление спирта кислородом воздуха в присутствии металлических катализаторов. В качестве катализатора наиболее активна платина, которая действует уже при комнатной температуре. Менее активной, но гораздо более дешевой является мелко раздробленная медь, действующая при высокой температуре. Через систему просасывают пары метилового спирта, смешанные с воздухом. Метиловый спирт окисляется окисью меди, а образующаяся металлическая медь вновь окисляется кислородом воздуха. Таким образом, эти реакции повторяются неограниченное число раз.
Реакция окисления метилового спирта окисью меди является экзотермичной, т. е. идет с выделением теплоты, поэтому нагревание нужно лишь в начале реакции. Этот способ лежит в основе технического получения некоторых альдегидов, например формальдегида.
2. Из дигалогенопроизводных, имеющих оба галогена у одного и того же первичного атома углерода, альдегиды получаются в результате реакции нуклеофильного замещения галогенов на гидроксилы. Этот способ используется для получения бензойного альдегида.
Физические свойства
Самый простейший представитель группы альдегидов – формальдегид – при обычных условиях представляет собой газообразное вещество. Следующий 46б представитель – уксусный альдегид – жидкость, кипящая при 20 °C. Последующие представители – тоже жидкости. Высшие альдегиды, например пальмитиновый альдегид, – твердые вещества. Температура кипения альдегидов ниже температуры кипения соответствующих им спиртов. С водой низшие альдегиды смешиваются в любых отношениях, последующие представители хуже растворимы в воде. Альдегиды хорошо растворимы в спирте и эфире. Низшие альдегиды обладают острым удушливым запахом; некоторые последующие представители имеют более приятный запах, напоминающий запах цветов.
Карбонильная группа всех карбонилсодержащих соединений – альдегидов, кетонов и кислот – дает интенсивную (вследствие сильной поляризации) полосу поглощения, причем для каждой группы карбонильных соединений эта полоса находится в узком интервале. Для формальдегида – при 1745 см– 1, для других алифатических альдегидов – в области 1740–1720 см– 11.
Альдегиды, а также кетоны в связи с наличием карбонильной группы =С=О обладают избирательным поглощением в ультрафиолетовом свете, давая максимумы абсорбации в области 2800 А. Многие ароматические альдегиды обладают приятными запахами.
47. Химические свойства альдегидов
Альдегиды вступают в очень большое число реакций, представляя собой одну из наиболее реакцион-носпособных групп соединения. Для удобства рассмотрения реакций альдегидов их можно разделить на группы в соответствии с теми атомами и группами атомов, которые присутствуют в молекуле альдегида.
Реакции окисления.
Альдегиды очень легко окисляются. Особенно характерно для альдегидов то, что такие слабые окислители, как некоторые окиси и гидроокиси тяжелых металлов, которые не действуют на ряд других органических соединений, легко окисляют альдегиды свободных металлов или их закисей (альдегидные реакции):
1) окисление окисью серебра (реакция «серебряного зеркала»). Если к прозрачному бесцветному аммиачному раствору окиси серебра прибавить раствор альдегида и нагреть жидкость, то на стенках пробирки при достаточной чистоте их образуется налет металлического серебра в виде зеркала; если же стенки пробирки недостаточно чисты, то металлическое серебро выделяется в виде светло-серого осадка. Альдегид при этом окисляется в кислоту с тем же числом атомов углерода, что и в исходном альдегиде;
2) окисление гидроокисью меди. Если к жидкости со светло-голубым осадком гидроокиси меди прибавить раствор, содержащий альдегид, и нагреть смесь, то вместо голубого осадка появляется желтый осадок гидроокиси меди (I) CuOH. Альдегид при этом превращается в кислоту.
При нагревании желтая гидроокись меди (II) переходит в красную окись меди (I):
2CuOH -> Cu2О + H2О;
3) кислородом воздуха окисляются лишь некоторые наиболее легко окисляющиеся альдегиды, к которым относятся ароматические альдегиды, как, например, бензальдегид. Если нанести бензальде-гид тонким слоем на часовое стекло и оставить на несколько часов, то он превратится в кристаллы бензойной кислоты. Окисление бензальдегида кислородом воздуха протекает как сложный многостадийный процесс с образованием свободных радикалов и промежуточного легко распадающегося продукта типа перекиси, так называемой надбензойной кислоты;