Чтение онлайн

на главную

Жанры

Органическая химия
Шрифт:

17. Изомерия, природные источники и способы получения олефинов

Изомерия олефинов зависит от изомерии цепи атомов углерода, т. е. от того, является ли цепь нераз-ветвленной или разветвленной, иот положения двойной связи в цепи. Существует еще и третья причина изомерии олефинов: различное расположение атомов и атомных групп в пространстве, т. е. стереоизо-мерия. Однако этот вид изомерии будет рассмотрен в дальнейшем на примере соединений с двойной связью.

Для обозначения места двойной связи (а также места ответвлений в цепи) согласно международной номенклатуре нумеруют атомы углерода наиболее

длинной цепи, начиная с того конца, к которому ближе стоит двойная связь. Таким образом, два изомера бутилена, обладающие неразветвленной цепью, будут называться 1-бутен и 2-бутен.

По женевской номенклатуре приоритет отдавался углеродному скелету, и нумерацию в формуле данного пентена начинали слева, поскольку ответвление углеродной цепи ближе к левому концу формулы. По номенклатуре приоритет отдается функциональным группам, поэтому нумерацию начинают с правого конца, к которому ближе двойная связь, определяющая главные свойства (функции) олефинов.

Радикал Н2С=СН-, производимый от этилена, называют обычно винилом; радикал Н2С=СН-СН2– , производимый от пропилена, называют аллилом.

Природные источники и способы получения олефинов

Этилен и его гомологи в очень небольшом количестве встречаются в природных газах, а также в нефти (в растворенном состоянии). Олефины, как упоминалось, образуются при крекинге нефти, а также в небольшом количестве при сухой перегонке дерева и каменного угля.

Отнятие воды от предельных спиртов – дегидратация. Это один из наиболее общих способов получения олефинов.

В промышленных условиях пары спирта при 350–500 °C пропускают над катализатором, в качестве которого используют окись алюминия, графит или некоторые другие вещества.

В лабораторных условиях для получения олефинов нагревают спирты с водоотнимающими веществами, например концентрированной серной кислотой, хлоридом цинка и т. д.

При применении серной кислоты реакция отщепления воды идет в две стадии:

1) спирт при взаимодействии с серной кислотой образует так называемый сложный эфир, например из этилового спирта образуется этилсерная кислота;

2) этилсерная кислота при нагревании разлагается, образуя олефин и серную кислоту.

Рассмотренный механизм реакции не является единственным, так как не только серная кислота, но и другие кислоты, как, например, соляная, которая не может образовать легко разлагающегося промежуточного продукта типа этилсерной кислоты, вызывают дегидратирование спиртов (отнятие воды). Установлено, что механизм образования этиленов из спиртов в известной степени зависит от строения спирта.

18. Дегидративание первичных спиртов, физические и механические свойства олефинов

При дегидратировании первичных спиртов (в которых углеродный атом, связанный с гидроксилом, соединен лишь с одним радикалом) предполагается следующий механизм:

1) протон (от любой кислоты) присоединяется к свободной паре электронов кислородного атома с образованием иона замещенного оксония;

2) далее при нагревании от иона замещенного оксо-ния отщепляется вода, в результате чего должен был образоваться карбокатион СН3 —СН2 +, но, так как такой ион очень непрочен, происходит его стабилизация путем потери протона и

образования двойной связи. Практически потеря воды и протона (при дегидратировании первичных спиртов) происходит почти одновременно и образуется олефин.

Отщепление галогеноводорода от галогенопроизводного.

Для отнятия галогеноводорода обычно применяют спиртовой раствор щелочи: Физические свойства

Первые три представителя ряда олефинов при обычных условиях являются газами, начиная с амиленов (С5Н10), – жидкостями; высшие олефины, начиная с С19Н38, – твердые тела.

Химические свойства

Для всех олефинов характерны многочисленные реакции присоединения, идущие с разрывом двойной связи и превращением ее в простую.

В большинстве случаев первой стадией реакции является присоединение к p-электронам двойной связи катиона (например, Н+) или катионоидной частицы (Вгб+: Вгб-), и, так как эта стадия является определяющей, многие реакции этого рода рассматриваются как электрофильное присоединение.

1. Присоединение водорода – гидрирование. Эта реакция легко происходит в присутствии таких катализаторов, как платина и палладий, при комнатной температуре, а в присутствии раздробленного никеля – при повышенной.

2. Присоединение галогенов С12, Вr2, I.

Легче всего присоединяется хлор, труднее всего.

Присоединение галогенов может протекать (в зависимости от условий) как по радикальному, так и по ионному механизму. Поскольку реакцию чаще проводят в условиях, в которых имеет место ионный механизм, следует остановится на последнем.

Поляризация происходит, в частности, под влиянием р-электронов; при этом положительно заряженный атом брома вступает во взаимодействие с р-электрона-ми двойной связи с образованием непрочного р-комп-лекса: происходит электрофильное присоединение.

Комплекс вследствие разрыва р-связи и присоединения положительно заряженного иона брома превращается в карбокатион. Освобождающийся анион брома присоединяется к карбокатиону с образованием конечного продукта присоединения.

19. Правила Марковникова. Метод Вагнера

В. В. Марковников занимался изучением реакций присоединения к олефинам и установил при этом следующую закономерность: в случае присоединения к непредельным соединениям веществ, содержащих водород, последний присоединяется к наиболее гидрированному углеродному атому (т. е. связанному с наибольшим числом атомов водорода).

Эта закономерность получила название правила Марковникова.

Так, при присоединении HI к пропилену водород присоединяется к крайнему непредельному атому углерода (как более гидрированному), а йод – к среднему атому углерода.

По современным представлениям, взаимное влияние атомов, как правило, обусловлено изменением распределения плотности электронных облаков, образующих химические связи.

Замещение атома водорода в этилене метильной группой ведет к изменению распределения электронной плотности, поэтому молекула пропилена является диполем: первый атом углерода является более электроотрицательным по сравнению со вторым (связанным с метильной группой).

Поделиться:
Популярные книги

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4