Чтение онлайн

на главную - закладки

Жанры

Основы кибернетики предприятия
Шрифт:

13. 5. Уравнения системы

13.5.1. Уравнения для розничной торговли

Рис. 13-2. Исходная диаграмма потоков в розничной торговле.

Мы начнем с двух простых уравнений: одно описывает уровень невыполненных заказов, другое — запасы товаров. На рис. 13-2 показаны эти две переменные на первой стадии построения диаграммы потоков. Здесь IAR — запасы товаров, а сплошные линии

изображают входящие и исходящие потоки материалов; UOR — уровень невыполненных заказов; соответствующие потоки изображены линиями с кружками, идущими к прямоугольнику и от него. Величина UOR может быть определена с помощью обычного уравнения уровня, который зависит от темпов одного входящего и одного исходящего потоков[67].

,

13-1, L

где

UOR — заказы, не выполненные розницей (в единицах товара);

RRR — требования (заказы), получаемые розницей (единицы в неделю);

SSR — розничная отгрузка (единицы в неделю);

DT — интервал времени между решениями уравнений (недели).

В указанном справа порядковом номере уравнения цифра 13 означает номер, главы цифра 1 — номер уравнения внутри главы, а индекс L указывает, что это уравнение описывает уровень. Уравнение определяет количество невыполненных заказов в настоящий момент времени К, исходя из количества невыполненных заказов, определенного в последний раз для момента времени Y, и из темпов входящего и исходящего потоков в интервале времени JK между вычислениями. Темпы входящих и исходящих потоков в течение интервала JK принимаются постоянными (для того, чтобы это допущение было приемлемым, интервал времени должен быть достаточно коротким). Произведение продолжительности интервала времени DT на темп входящего потока RRR. JK определяет число новых заказов, полученных за интервал JK. Точно так же произведение (DT)(SSR.JK) определяет количество заказов, выполненных в течение этого же интервала. Обе части уравнения имеют одинаковую размерность:

Интервал времени между решениями DT должен быть коротким по сравнению с величиной отображаемых в модели запаздываний[68]. В нашем примере интервал решений должен быть небольшой частью недели. Темпы потока при такой формулировке уравнения измеряются в общепринятых единицах (например, недельный темп), и уравнение остается справедливым независимо от длины интервала DT. Это оставляет достаточную свободу для выбора интервала времени DT между решениями в соответствии с критериями, которые будут рассмотрены ниже.

На рис. 13-2 для полноты учета всех видов потока показан архив выполненных заказов, исключаемых из действующей системы.

Второе уравнение, описывающее уровень запасов в розничной торговле, по существу аналогично первому:

,

13-2, L

где

IAR — фактический запас в рознице (единицы);

SRR — поставки, получаемые розницей (единицы в неделю);

SSR — розничная отгрузка (единицы в неделю).

Приведенные уравнения, описывающие уровни, просты и неопровержимы. Они представляют собой основу описания системы. Эти уравнения отражают тот факт, что действительный остаток определяется путем последовательного прибавления или вычитания количеств, определяемых темпами входящего и исходящего потоков.

Уравнения темпов, напротив, не являются столь очевидными и простыми. Именно в уравнениях темпов отображается механизм решений, свойственный системе. Уравнения темпов отражают наше понимание факторов, определяющих действия. Решения, которые регулируют темпы и лежат в основе уравнений

темпов, должны быть сформулированы таким образом, чтобы уравнения оставались справедливыми и достаточно точными при любых, даже самых больших изменениях значений переменных, которые могут иметь место в системе. Уравнения темпов часто включают нелинейные функциональные зависимости, описывающие реальное поведение системы в различных обстоятельствах.

Вопреки обычному представлению требование, чтобы уравнения темпов были верными при экстремальных значениях входящих в них переменных, скорее облегчает, чем затрудняет, построение полезной модели. Очень часто при определении экстремальных условий, которые могут иметь место на практике, мы можем хорошо обрисовать границы, в которых должна действовать система. Когда эти границы установлены, влияние промежуточных функциональных взаимосвязей между причиной и следствием часто становится пренебрежимо малым. Все зависимости, удовлетворяющие известным ограничительным условиям, могут часто давать почти одни и те же результаты. Уравнение темпа может быть построено на основе рассмотрения различных обстоятельств, оказывающих влияние на темп потока. Для того чтобы это проиллюстрировать, начнем с определения темпа отгрузки товаров из розницы покупателям SSR.

Здесь под темпом отгрузки товаров покупателям понимается объективно обусловленный темп. Это значит, что он определяется состоянием системы, а не чьим-либо произвольным административным решением. В принципе можно представить себе решение вообще не посылать имеющиеся товары; однако встречается оно редко, и мы будем им пренебрегать. С математической точки зрения нет никакой разницы между уравнениями явных и неявных решений. Однако определение вида решения обычно помогает внести ясность в наши мысли при построении уравнения.

Темп отгрузки товаров покупателям должен зависеть от величины задолженности по невыполненным заказам, по которым товары подготовлены к отправке. В предельном случае, когда нет заказов, не будет и поставки. Точно так же возможность поставить товары должна зависеть от наличия запасов, из которых может производиться поставка. Темп поставок не зависит от каких-либо других темпов, имеющих место в системе в тот же момент времени. Возможность поставки в данный момент зависит от наличия невыполненных заказов, но не зависит от существующего в данный момент времени темпа поступления новых заказов, так как товары по ним в этот момент еще не могут быть предметом поставки. Только уровень имеющихся товаров, а не темп их поступления в розничную торговлю SRR и не темп размещения заказов в оптовом звене влияет на возможность поставок в настоящий момент, хотя уровни, определяющие возможность поставок в данный момент, достигли своей теперешней величины под влиянием определенных темпов этих потоков в прошлом. Имеющие место в данный момент темпы ряда потоков воздействуют на будущую, а не на настоящую возможность поставок. Если читателю кажется, что другие темпы потоков, имеющие место в настоящее время, влияют на темп поставок в данный момент времени, значит, он не смог увидеть разницу между мгновенными и средними темпами или не разобрался в достаточной мере в вопросе о том, что понимается под настоящим моментом времени.

Есть, очевидно, много приемлемых способов построения уравнения темпа поставки товаров. Мы здесь будем считать, что темп выполнения заказов определяется объемом невыполненных заказов и запаздыванием выполнения заказов, которое является переменной величиной. В свою очередь запаздывание выполнения заказов мы будем рассматривать как функцию имеющихся запасов.

При таком способе определения темпа поставок мы можем получить следующее простое уравнение:

SSR — розничная отгрузка (единицы в неделю);

UOR — заказы, не выполненные розницей (единицы);

DFR — запаздывание (переменное) выполнения заказов розницей (недели).

Это уравнение имеет форму показательного запаздывания первого порядка[69] только без учета того обстоятельства, что запаздывание может быть переменной величиной. Из приведенного уравнения следует, что недельный темп поставок в данное время составляет определенную часть всех невыполненных заказов, равную 1/DFR.K. В известном смысле это уравнение определяет, что именно подразумевается под запаздыванием DFR. Мы можем проверить, насколько удовлетворительной может быть эта зависимость в различных несложных обстоятельствах.

Поделиться:
Популярные книги

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Кремлевские звезды

Ромов Дмитрий
6. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кремлевские звезды

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Безымянный раб

Зыков Виталий Валерьевич
1. Дорога домой
Фантастика:
фэнтези
9.31
рейтинг книги
Безымянный раб