Основы кибернетики предприятия
Шрифт:
IAF=(AIF)(RSF),
13–70, N
RSF=RRF,
13–71, N
CPF=(DCF)(RRF),
13–72, N
OPF=(DPF)(RRF),
13–73, N
где
RRF — исходная величина требований, получаемых производством (единицы в неделю);
RRR — исходная величина
UOF — исходное число заказов, не выполненных производством (единицы);
RSF — исходная величина усредненных требований к производству (единицы в неделю);
DHF — минимальное запаздывание выполнения заказа производством (недели);
DUF — среднее запаздывание выполнения заказов производством из-за отсутствия на складе некоторых товаров при общем «нормальном» объеме запасов (недели);
IAF — исходный фактический запас в производстве (единицы);
AIF — постоянный коэффициент пропорциональности (недели);
CPF — исходное количество заказов в стадии оформления на заводе (единицы);
DCF — запаздывание оформления заказа на заводе (недели);
OPF — исходное количество заказов в производстве (единицы);
DPF — запаздывание, связанное с затратой времени на производство продукции (недели).
Уравнения с 13–54 по 13–73 дают исходные величины, необходимые для того, чтобы можно было начать решение уравнений с 13-1 по 13–53.
13.5.5. Параметры (константы) системы
Теперь, когда мы завершили формулирование уравнений, описывающих поведение системы, и уравнений, определяющих начальные условия, нам необходимо определить числовые значения параметров системы (величин, постоянных на протяжении каждого отдельного проигрывания модели).
Первый параметр, с которым мы встречаемся в уравнениях, является скорее параметром процесса вычисления, чем системы, как таковой. Это интервал решений DT. Интервал решений должен быть небольшой частью (менее одной шестой) отрезка времени, представленного в системе любым из запаздываний третьего порядка. Так как мы будем отражать в системе запаздывания длительностью порядка половины недели, то выберем следующий интервал решений:
DT=0,05 недели.
Поскольку в этой главе мы рассматриваем систему типичную или возможную, а не представляющую какую-либо конкретную фирму, мы не будем подробно останавливаться на выборе числовых значений параметров, а возьмем их вероятные значения с тем, чтобы позднее посмотреть, как влияет изменение значений параметров на характеристики системы.
Рассмотрим сначала запаздывания выполнения заказов розничной, оптовой торговлей и производством. Первый параметр связан с минимальным запаздыванием выполнения заказа в случае, когда необходимый товар имеется в запасе на складе. Предположим, что эти запаздывания будут порядка одной недели в каждом из трех подразделений системы:
DHR — 1,0 недели — минимальное запаздывание в розничном звене;
DHD = 1,0 недели — минимальное запаздывание в оптовой торговле;
DHF = 1,0 недели — минимальное запаздывание обработки заказа на заводе.
Необходимо также выбрать величины запаздываний выполнения заказов из-за отсутствия на складе необходимого товара DUR, DUD и DUF. При рассмотрении уравнения 13-6 мы на основе интуитивных предположений установим, что эти запаздывания
На рис. 13–17 показан ряд функций, из которых мы должны сделать выбор. По вертикальной оси отложена та часть общего среднего запаздывания, которая связана с отсутствием на складе необходимого товара; она выражена в долях минимального запаздывания DHR. По горизонтальной оси отложено безразмерное отношение фактического запаса к желательному. Отдельные кривые показывают различные отношения запаздывания DUR (связанного с отсутствием на складе некоторых товаров в то время, как их суммарное количество IAR находится на желательном уровне JDR) к запаздыванию DHR (минимальному времени, необходимому для оформления заказа).
Рис. 13–17. Зависимость запаздывания от отношения запасов.
На рис. 13–17 проведена жирная вертикальная линия в том месте, где фактический запас равен желательному. Точки, в которых кривые пересекают эту линию, соответствуют такому отношению запаздываний DUR и DHR, которое будет иметь место в условиях «нормальной» величины общего запаса. Приведенные кривые показывают, сколь быстро изменяется среднее запаздывание выполнения заказа при изменении запаса. Пока мы придерживаемся определенного функционального отношения, задаваемого уравнениями 13-6, 13–24 и 13–42, мы не можем независимо выбирать величину запаздывания DUR при нормальном запасе товаров и скорость, с какой будет увеличиваться это запаздывание, при сокращении наличия товаров. Желательное соотношение между этими величинами можно установить, принимая различные функциональные отношения между запасом и запаздыванием[80]. Допустим, что кривые, обозначенные 0,4; 0,6 и 1,0, согласуются соответственно с нашей оценкой запаздываний выполнения заказов розничной и оптовой торговлей и производством из-за отсутствия на складах необходимых товаров. Для определения абсолютных величин этих запаздываний приведенные в обозначениях числа надо умножить на минимальное запаздывание, которое уже выбрано нами равным 1 неделе; поэтому запаздывания для розничной и оптовой торговли и производства будут равны соответственно:
DUR = 0,4 недели,
DUD — 0,6 недели,
DUF = 1,0 недели.
Принятие таких значений отношения запаздываний DUR и DHR означает, например, что, если запас товаров в рознице сократится до половины желательного количества, то среднее запаздывание выполнения заказа розничным звеном увеличится с 1,4 до 1,8 минимального времени, необходимого для выполнения заказа. В оптовой торговле соответствующее запаздывание увеличилось бы с 1,6 до 2,2 раза по сравнению с минимальным, а в производстве — с 2 до 3 раз. Оценка достоверности этих значений в конкретной ситуации могла бы быть произведена на основе анализа движения типичных заказов с целью определить характерное для них время выполнения и величину запаздывания из-за отсутствия на складе некоторых товаров.