Основы кибернетики предприятия
Шрифт:
Рис. 13–20. Влияние случайных отклонений розничных продаж.
Можно показать, что последовательность случайных помех содержит в себе компоненты самых различных частот. Поэтому модель еженедельных случайных продаж в рознице будет обязательно включать в себя месячные, квартальные, годовые и любые другие периодически повторяющиеся отклонения. Если система, находящаяся в этих условиях, действует избирательно и имеет тенденцию усиливать колебания определенных частот,
Эта тенденция системы усиливать возмущения некоторых частот объясняется природой ее структуры, запаздываниями и правилами, которые определяют решения в системе. Позднее мы снова вернемся к этому вопросу, чтобы проследить за тем, как изменение руководящих правил может сделать систему менее чувствительной к случайным возмущениям.
Заказы, размещенные с целью регулирования запаса товаров и заполнения каналов, определяются для всех подразделений системы средней величиной продаж, которая вычисляется в данном случае с помощью показательной функции с 8-недельной временной константой.
Усредненные розничные продажи на приведенном рисунке не показаны; анализ полученных на вычислительной машине данных показывает, что они, как правило, отличаются от исходной величины для установившихся условий не более чем на 2–3 % и лишь изредка это отклонение превышает 5 %. Как усреднения, так и запаздывания способствуют погашению еженедельных возмущений на вводе системы, имеющих большую частоту, но не затрагивают компоненты с низкой частотой, к которым система наиболее чувствительна.
13.7.4. Предельная производственная мощность
Уравнения для производственно-сбытовой системы, приведенные в разделе 13.5, включают в себя в нескольких местах произведения и отношения переменных; следовательно, они отображают нелинейную систему; однако степень нелинейности этой системы невелика.
Реальные промышленно-сбытовые системы содержат значительное число важных нелинейных характеристик. Одной из них является верхний предел возможного выпуска продукции, который определяется располагаемой производственной площадью и имеющимся оборудованием. Для того чтобы в первом упрощенном приближении отразить влияние ограничений, связанных с оборудованием, мы можем просто ограничить допустимую производственную мощность, установив верхний предел темпа выдачи производственных заказов заводу[82]. В дальнейшем можно будет более реалистично отобразить систему, учтя переменную величину рабочей недели, число рабочих смен, снижение производительности труда при перегрузке оборудования и производства в целом, возможную нехватку материалов и другие факторы, оказывающие влияние на фактический выпуск продукции.
Анализ влияния константы ALF, входящей в уравнение 13–46, даст нам возможность проследить, как отразится на производстве ограничение его мощности величиной, превышающей, например, на 20 % средние требования розничной торговли:
ALF = 1200 единиц в неделю — константа, определяющая предел производственной мощности.
Приведенные на рис. 13–21 кривые соответствуют 10-процентным ежегодным периодическим колебаниям темпа розничных продаж, определяемым уравнениями 13–76 и 13–77. При таком вводе розничные продажи изменяются в пределах между 900 и 1100 единицами в неделю. Максимальная производственная мощность предприятия равна 1200 единицам в неделю. Таким образом, предел производственных возможностей предприятия всегда превышает величину розничных продаж не менее чем на 100 единиц в неделю. И несмотря на это, усиления в системе приводят в действие ограничение, связанное с максимальной производственной мощностью.
Рис. 13–21.
Производство оказывается не в состоянии удовлетворить требования, связанные с регулированием запасов и содержимого каналов системы. Поэтому на производстве скапливаются невыполненные заказы. В результате возрастает запаздывание выполнения заказов, что в свою очередь приводит к еще большему увеличению потока заказов от оптовых баз по сравнению с его действительной потребностью[83]. В течение первых нескольких месяцев производства в условиях ограниченной производственной мощности влияние этих условий носит регенеративный характер (увеличение числа заказов ведет к росту числа невыполненных заказов, к увеличению запаздывания и к увеличению числа заказов впрок), приводя к росту задолженности по заказам и поддержанию максимального темпа производства на протяжении первого полугодия.
Кривые, отображающие деятельность системы на рис. 13–21, имеют совсем иной вид по сравнению с рис. 13–19. Новый элемент реальности, внесенный в систему, привел здесь к появлению некоторых новых эффектов, которые присутствовали уже и ранее, но не имели большого значения в уравнениях системы. Мы уже упоминали практику заказа впрок, порожденную запаздыванием в поставках (это уже третий фактор, вызывающий расширение системы, в дополнение к практике образования запасов и поддержания заполнения каналов на уровне, пропорциональном объему продаж). Уравнения 13–42 и 13–39 определяют возможность отгрузки товаров в зависимости от фактического запаса и невыполненных заказов. Увеличивающееся при снижении запасов запаздывание выполнения заказов служит объяснением того факта, что в данном примере запас товаров не падает до нуля, несмотря на большую задолженность в выполнении заказов. Происходит это вследствие возрастания минимального времени обработки товаров на складе из-за того, что поставки не могут быть скомплектованы и отправлены, если склад пуст.
Сравнение рис. 13–19 и 13–21 показывает, что ограничение производственной мощности предприятия вызвало увеличение размаха колебаний объема заказов производству по сравнению с прежним[84]. Запас товаров на оптовых базах резко возрастает, когда производство получает возможность выполнить заказы. В это время задолженность производства по невыполненным заказам превращается в товары, которые перемещаются в запасы оптовых баз. Это порождает дальнейшее сокращение заказов оптовых баз производству, поскольку они предпринимают попытки привести излишек имеющихся запасов в соответствие с небольшим (10 %) падением продаж, которое наблюдается в это время.
13.7.5. Сокращение запаздывания оформления документов
Одной из главных задач изучения динамики производственно-сбытовой системы является оценка тех изменений, которые могут быть произведены в организации производства и сбыта. Изменение, предлагаемое довольно часто, состоит в механизации ручных конторских операций с целью ускорить обработку информации. Чтобы показать в упрощенном виде, как может быть оценен такой шаг, мы можем определить результаты сокращения запаздывания размещения заказов в рассматриваемой элементарной сбытовой системе.
Для того чтобы воссоздать ежегодные 10-процентные периодические колебания розничных продаж, мы используем тот же самый экспериментальный ввод, который был описан уравнениями 13–76 и 13–77. В табл. 13-4 запаздывания оформления заказов в розничной и оптовой торговле и производстве изменены по сравнению с соответствующими значениями, приведенными выше, в подразделе 13.5.5.
Таблица 13-4. Запаздывание оформления заказов