Основы кибернетики предприятия
Шрифт:
Следующую группу составляют параметры, которые связывают уровень желательного запаса товаров со средним темпом продаж. Эти константы определяются числом недель, в течение которых средний темп продаж может быть обеспечен за счет «нормального» запаса товаров.
Пусть эти константы для розничной и оптовой торговли и производства будут равны соответственно:
AIR = 8 неделям,
AID = 6 неделям,
AIF = 4 неделям.
Если мы разделим эти константы на 52 недели, то получим темп оборачиваемости запаса товаров в течение года. Приведенные выше цифры соответствуют оборачиваемости запасов в трех подразделениях системы, соответственно 6,5; 8,7 и 13 раз в год.
Параметры
DRR — 8 неделям,
DRD — 8 неделям,
DRF = 8 неделям.
В уравнениях 13-9, 13–27 и 13–45 параметры DIR, DID и DIF определяют темпы регулирования запасов и заполнения каналов системы. Как мы увидим позже, наша система чувствительна к величинам этих темпов. Для точного установления значений такого рода параметров у нас может не хватать необходимых данных> их величину можно оценить на основе данных о динамике заказов в прошлом. Значения этих параметров можно будет изменить в дальнейшем. Мы начнем с выбора таких значений, которые кажутся нам правдоподобными, а позже рассмотрим, какое влияние оказывает изменение этих значений. Первоначально примем, что в каждом из подразделений системы темп поступления заказов уменьшает отклонение фактических запасов и заполнения каналов от соответствующих желательных величин со скоростью, равной одной четверти этого несоответствия в неделю; тогда запаздывание регулирования запасов (и заполнения каналов) для розничной и оптовой торговли и производства составит соответственно:
DIR = 4 неделям,
DID = 4 неделям,
DIF = 4 неделям[81].
Далее мы должны установить запаздывания оформления заказов на закупки товаров. Допустим, что на это нужно больше времени в розничной торговле, чем в оптовой, где этот период в свою очередь больше, чем в производстве. Пусть
DCR = 3 неделям — запаздывание оформления заказа в розничном звене;
DCD = 2 неделям — запаздывание оформления заказа в оптовой торговле;
DCF = 1 неделе — запаздывание оформления заказа в производстве.
Для почтового запаздывания пересылки заказа из розничного звена и из оптовой торговли примем следующие величины:
DMR = 0,5 недели,
DMD = 0,5 недели.
Для запаздывания транспортировки товаров с оптовых баз в розничное звено и с завода на оптовые базы примем следующие значения:
DTR = 1,0 недели,
DTD = 2,0 недели.
Промежуток времени между моментом принятия решения об изменении темпа производства и тем моментом времени, когда может быть достигнут новый темп выпуска готовой продукции, примем равным 6 неделям:
DPF = 6,0 недели.
Для решения уравнения 13–46 необходимо знать значение максимальной производственной мощности. В нашем первоначальном исследовании системы не должно быть существенных ограничений производственного характера. Производственная мощность может быть поэтому принята во много раз большей по сравнению с уровнем розничных продаж:
ALF = (1000)(RRI) единиц в неделю.
В приведенном выражении ALF есть предел производственной мощности предприятия, а RRI — исходный темп требований к розничному звену.
Исходные величины темпа производства и продаж могут быть выбраны произвольно в каком-либо удобном
RRI = 1000 единиц в неделю, исходный темп требований к рознице.
Мы имеем теперь полную систему уравнений динамики, уравнений исходных значений и знаем параметры; исключение составляет только темп требований к рознице RRR, который будет использоваться в качестве ввода с целью испытания системы.
При разных исследованиях поведения системы будет устанавливаться различный темп розничных продаж. Значение этого темпа будет задаваться каждый раз при формулировании условий, в которые должна быть поставлена система.
13. 6. Общие принципы выбора рациональных значений параметров
Читатель может вначале возразить против произвольного обращения, проявленного только что в отношении выбора значений параметров, поскольку оно несовместимо со многими попытками использовать для этой цели статистические оценки, предпринимаемыми в науке об управлении и описанными в экономической литературе. Однако нам представляется, что широко поставленный сбор данных должен следовать за доказательством необходимости большей точности определения того или иного параметра. Во многих задачах любые значения параметров, не выходящие за пределы разумного, приведут к почти одинаковым результатам.
Не приходится сомневаться в том, что большинство промышленно-сбытовых и экономических систем не обладают высокой чувствительностью к незначительным изменениям параметров; иначе качественный характер их динамического поведения был бы значительно более изменчив, чем это есть на самом деле. В первом приближении колебания экономики из десятилетия в десятилетие имеют неизменный характер, хотя многие детали системы претерпевают при этом значительные изменения. За последние двести лет мы изменили форму управления государством и банковскую систему; расходы правительства выросли до значительной доли нашего национального продукта; страна из преимущественно аграрной превратилась в преимущественно индустриальную; скорости связи и транспортировки увеличились примерно в 100 раз. И все же, несмотря на эти изменения, капиталистической экономической системе присущи те же самые колебания и тенденции роста и денежной инфляции, что и раньше. Мы увидим, что сложность структуры системы, наличие распределенных по всей системе запаздываний, решения, имеющие следствием усиления в системе, и временные константы, источником которых служит память и действия людей, — все это, вместе взятое, создает систему, поведение которой не зависит от изменения большинства параметров, если эти изменения лежат в разумных пределах.
В информационной системе с обратной связью различные влияния взаимно уравновешиваются. Отклонения, связанные с изменением одного из факторов, часто компенсируются автоматически возникающими изменениями других факторов. Чем более полной и жизнеспособной является система, тем менее чувствительной будет она к незначительным изменениям большинства параметров.
Определить чувствительность модели к изменениям значений параметров можно путем испытания модели. Когда выявлен параметр, к изменениям которого система особенно чувствительна, мы сталкиваемся с более сложной проблемой, чем просто необходимость определить его значение. Возможно, мы будем в состоянии точно измерить параметр; однако нам нужна уверенность в неизменности его значения с течением времени. В противном случае он может оказаться одной из существенных переменных системы; если в этом случае источник изменений параметра не будет установлен, то поведение модели может ввести нас в заблуждение. Возможно, этот параметр относится к числу тех, которые можно регулировать. Если же параметр не может быть точно измерен или если он не является константой, а также если он не поддается регулированию, тогда, вероятно, будет целесообразно видоизменить структуру про-мышленно-сбытовой системы таким образом, чтобы величина и изменение параметра не влияли в большой степени на поведение системы.