Основы кибернетики предприятия
Шрифт:
LCEF — расходы по заработной плате на заводе (долл. в неделю);
MIF — темп выпуска продукции для возмещения запаса на заводе (единицы в неделю);
CWRF — константа, средняя недельная заработная плата (долл. за человеко-неделю);
CPLF — константа, производительность труда (единицы за человеко-неделю);
CCEF — темп постоянных кассовых расходов на заводе (долл. в неделю).
В круглых скобках уравнения 14-115 первые два члена определяют суммарный
Чистая прибыль будет определена просто как половина полной прибыли до уплаты налогов:
NPRF.KL=(0,5)(PBTRF.K),
14-116, R
NPTDF.K=NPTDF.J+(DT)(NPRF.JK),
14-117, L
NPTDF=0,
14-118, N
где
NPRF — темп получения чистой прибыли на заводе (долл. в неделю);
PBTRF — темп получения прибылей до выплаты налога (долл. в неделю);
NPTDF — чистая прибыль, вычисленная на определенный момент времени (долл.).
Уравнение 14-117 является уравнением уровней, которое определяет величину чистой прибыли, полученной к определенному моменту времени. Эта величина используется как один из показателей оценки работы системы. Начальное значение этого уровня, согласно уравнению 14-118, равно нулю.
Дивиденды держателей акций определяются, исходя из среднего значения чистой прибыли за некоторый период времени. Тогда величина дивидендов не будет изменяться при кратковременных изменениях темпа прибыли. Соответствующие уравнения при этих условиях принимают следующий вид:
14-119, A
14-120, A
где
SDLF — уровень дивидендов акционеров на заводе (долл. в неделю);
TASDL — время регулирования уровня дивидендов (недели);
NPRF — темп получения чистой прибыли (долл. в неделю);
RRF —
CFGPF — константа, цена готового изделия (долл. за единицу);
CRMPF — константа, цена материалов на заводе (долл. за единицу);
CWRF — константа, средняя недельная заработная плата (долл. за человеко-неделю);
CPLF — константа, производительность труда (единицы изделий за человеко-неделю);
CCEF — темп постоянных кассовых расходов (долл. за неделю).
Время экспоненциального усреднения TASDL принято в рассматриваемом примере равным 52 неделям.
Записанные уравнения предусматривают выплату всей прибыли в форме дивидендов, поскольку в формулировку задачи модели не были включены какие-либо иные цели использования прибыли.
Приведенные выше уравнения завершают процесс математического описания изучаемой системы. В дополнение представляется целесообразным включить в модель еще некоторые полезные для изучения системы величины, которые сами по себе не являются активными параметрами или переменными. Помимо этого, нам необходимо иметь набор входных сигналов и типовых функций для анализа поведения системы. В последующих двух параграфах мы и остановимся на этих вопросах.
14. 5. Вспомогательная выходная информация
В ряде случаев оказывается весьма желательным в выходной информации, получаемой на модели в виде цифр, таблиц или графиков, иметь переменные в такой форме или в таких комбинациях, которых нет непосредственно в структурной схеме модели. В дальнейшем мы их будем называть вспомогательными переменными. Они вычисляются только потому, что их значения, возможно, потребуются при изучении системы.
Для рассматриваемой здесь модели системы действительные числовые значения переменных не имеют большого значения, поскольку модель может отображать деятельность систем различных масштабов. В наибольшей степени нас интересуют относительные изменения большинства переменных; следовательно, для переменных, имеющих первостепенное значение, мы должны уметь вычислять их изменения по отношению к начальным установившимся значениям:
14-121, S
14-122, S
где
BLTPC — относительное изменение общего портфеля заказов (проценты);
BLTF — общий портфель заказов (единицы);
CINPI — константа, исходная величина входящего потока заказов (единицы в неделю);
DNBLF — запаздывание в нормальном портфеле заказов завода (недели);
CASPC — относительное изменение кассовой наличности (проценты);