ПАРАЛЛЕЛЬНЫЕ (научно-фантастическая повесть)
Шрифт:
Однако из этого безинерционного вращательного движения ничего не может возникнуть…
Что-то или кто-то должен нарушить синхронность вращения первобытного торсиона…
Недаром же Колотур в своей картинке изобразил два альтернативных спектра солнечного света. Красный свет – наиболее энергоносный спектр, а зеленый – практически «всепоглощающий» – оба наиболее биологически ценные спектры.
Тут у природы есть своя философия.
Вот только в чем конкретно она заключается?…
Этот вопрос он переслал Соколову.
– Сергей Сергеевич, что Вы скажите по поводу моей физической философии?
– А
Эту тайну мироздания искать в данный момент на нашей Земле бесполезно. Видимо огромная теоретическая сложность концепции выводит её за рамки понимания здравого смысла.
– А мне, находясь в здравом уме, кажется, – откликнулся математик Крус, который, как и вся лаборатория, задолбанная рутинной работой, живо следил за происходящим.
– Если мы оставим действительно неразрешимую проблему о происхождении Вселенной, а сконцентрируемся на альтернативных пространствах, то кое-что станет понятным. Гравитация формирует сжимающееся пространство, её действие направлено от периферии к центру – это наша Вселенная.
Антигравитация формирует расширяющееся пространство, которое можно себе представить как вывернутое «шиворот на выворот» наше пространство. Эти две вселенные не аннигилируют только потому, что находятся в разных измерениях и окружены физическим вакуумом.
Как возможно себе это вообразить…Я сейчас нарисую…
И в воздухе, у всех перед глазами, появилась извивающаяся двухцветная лента.
Ползущий по ней жучок, не сходя с ленты, может переходить с одной поверхности на другую, с внутренней на внешнюю, с внешней на внутреннюю и так по цепочке без конечно…..
– И бедняга жучок – хамелеон, двигаясь по одной поверхности, вынужден всякий раз менять свой цвет на противоположный, когда он пересекает четкую линию раздела двух альтернативных поверхностей, – посочувствовал Крус путешественнику в бесконечном его странствии, которое Колотур вставил в голограмму для наглядности.
– Теперь нам осталось только представить себе, как трехмерная сфера должна вывернутся наизнанку, чтобы мы могли прейти из нашего пространства в параллельное. И самое главное, определить место этого перехода, – он на минуту задумался и продолжил…
– Это конечно примитивная композиция, но соприкасания сферы и антисферы в математике решаются весьма сложно и не однозначно. Для того, чтобы доказать соприкасание сферы Эвклида со сферой Вселенной придуманы две неэвклидовы геометрии – Лобачевского и Римана.
В III веке до нашей эры греческий учёный Евклид привёл в систему известные ему геометрические сведения в большом сочинении «Начала». Эта книга более двух тысяч лет служила учебником геометрии во всём мире. В нем Евклид изложил основы геометрии в двадцати трёх определениях, пяти постулатах и девяти аксиомах. Опираясь на них, люди с достаточной степенью точности измеряли и продолжают измерять и вычислять пространственные отношения и связи на плоскости и сфере.
И заметьте не только на листе бумаги или в своем огороде или городе, но и в Космосе! Однако пытливому уму человека было тесно в рамках «ограниченной привычности».
Его постоянно терзала запредельность очевидных прописных истин.
Одной из этих туманных истин был пятый постулат Эвклида, а именно – «недоказуемость» его в том, что две параллельные линии при их бесконечном продолжении не пересекаются. Отсюда следовало предположение, что и сумма углов треугольника в бесконечных пространствах не равна 180о, а больше или меньше этого. Поэтому для космологии расчеты «первобытной» геометрии признавались неточными. Как указывается в справочниках, при измерениях на участках земной поверхности, малых в сравнении с размерами земного шара, можно с успехом применять обычную планиметрию, однако результаты измерений на больших участках обнаруживают существенное отклонение от законов планиметрии, – привел цитату Крус и ухмыльнулся.
– Мне такие прямые измерения не известны. Сам Лобачевский пытался измерить угловые параметры пространства Вселенной между отдаленными звездами, но у него ничего не получилось кроме постулатов Евклида. Это было объяснено неточностью инструментальных измерений того времени. Но и сейчас подобные измерения нм к чему не приводят. С моей точки зрения это неизбежно, поскольку мы проводим измерения не в фактическом пространстве, а измеряем, в значительной степени, его двухмерную проекцию, которая не признает изменения суммы углов треугольника.
Однако в 1868-м году итальянский математик, профессор римского университета Эудженио Бельтрами построил модель пространства для неевклидовой геометрии. В своей работе «Опыт интерпретации неевклидовой геометрии» он показал, что наряду с плоскостями и сферическими поверхностями, на которых «законно» осуществляется евклидова геометрия, существуют и другие реальные поверхности, на которых частично действует планиметрия Лобачевского.
Представьте полукружие, которое вращается вокруг своего диаметра, и вы получите сферу. А теперь взгляните на рисунок, на котором вместо полукружия изображена очень любопытная кривая, называемая «трактриса».
Вращая трактрису вокруг прямой, к которой стремятся её свободные концы, мы получим модель пространства, которая получила название «псевдосфера». Формально эта пространственная фигура может быть названа «сферой», ибо она образована путём вращения кривой, то есть тем же способом, каким образуется сфера. И эту сферу действительно можно назвать «мнимой», поскольку образована она вращением не дуги, которая имеет так называемую «положительную кривизну» («выпуклость»), а вращением трактрисы, имеющей отрицательную кривизну, или «вогнутость».