Чтение онлайн

на главную

Жанры

Шрифт:

Но представление о частицах, передающих свет, оказалось вовсе не таким невинным: его очень трудно согласовать с волновыми свойствами света, такими, как интерференция (вспомните радужные пятна на воде, это взаимодействие света, отраженного от воды и от масляной пленки) и дифракция (свет вблизи препятствия изгибается тем больше, чем больше длина волны). Ньютон пытался, но не смог убедительно соединить корпускулярную и волновую картины.

Сейчас мы знаем, что в пустоте все взаимодействия - электрическое, магнитное, гравитационное, ядерное - передаются от точки к точке со скоростью, не превышающей скорость света. Если мы сдвинули одно тело за очень короткое время, сила тяжести, действующая на другое, должна измениться. Но если это

другое тело далеко, то пройдет много времени, прежде чем оно получит толчок. Где же находится возмущение, когда первое тело уже не движется, а второе еще не имеет сведений о его новом положении? На этот вопрос теория даль-нбдействия не может разумно ответить.

Поэтому многие физики отказались от идеи дальнодействия. Для объяснения передачи воздействия на расстоянии была придумана специальная среда - эфир,- заполняющая все пространство между телами. Воздействие передается за счет того, что вокруг заряженных и намагниченных тел эфир деформируется, и в этом причина силы, действующей на другое заряженное или намагниченное тело. Свет распространяется в эфире как звук в твердом теле. Деформация эфира передается от точки к точке.

Дальнейшее развитие физики подтвердило правильность этого объяснения. Пришлось только исправить представление об устройстве эфира. Вплоть до начала XX века физики пытались строить эфир по образу и подобию известных твердых и жидких тел, между тем как это среда особого рода, свойства ее следует изучать не по аналогии с известными примерами, а сами по себе.

Электромагнитные свойства пустоты

Джеймс Максвелл своими удивительными уравнениями (1878 г.) объединил различные разделы физики: оптику, электричество, магнетизм. У него были могучие предшественники: прежде всего Майкл Фарадей, открывший в 1830 году закон электромагнитной индукции.

Если изменять магнитное поле, то в проволочном кольце, окружающем магнитный поток, возникает электрический ток. Каждый знает, что на этом основаны динамо-машины - движение магнита создает ток. Как абстрактно выглядело это явление в те времена! И как быстро оно превратилось в основу для строительства современных электростанций, питающих светом и энергией громадные города!

Появление тока от переменного магнитного поля означает, что в пространстве вокруг магнитного потока возникает охватывающее его кольцевое электрическое поле.

Еще в 1820 году Ханс Эрстед обнаружил, что ток, текущий по проводнику, создает вокруг себя кольцевое магнитное поле. Что будет, если изменять периодически напряжение электрического поля, создающего ток в проводнике? Получится переменный ток и переменное магнитное поле.

Гениальная догадка Максвелла состояла в том, что магнитное поле создается не только движением зарядов, но и самим переменным элекрическим полем, аналогично тому, как электрическое поле создается переменным магнитным. Если в какой-нибудь области пустого пространства изменять электрическое поле, то вокруг этой области возникнет переменное магнитное поле.

Итак, у пустоты есть два новых замечательных свойства - переменное магнитное поле создает переменное электрическое, а переменное электрическое поле создает переменное магнитное. Но из этих двух свойств следует третье, не менее важное, - распространение в пустоте электромагнитных волн. Действительно, переменное электрическое поле, возникшее вблизи антенны радиопередатчика, образует вокруг себя меняющееся с такой же частотой магнитное поле, а оно, в свою очередь, по закону Фарадея создает уже в соседнем месте переменное электрическое поле. Так это возмущение вакуума распространяется по всем направлениям.

В конце 80-х годов XIX века, через десятилетие после создания уравнений Максвелла, Генрих Герц экспериментально обнаружил распространение электромагнитных волн. Почти все блага цивилизации основаны на этих открытиях: электростанции, радио, телевидение, метро, троллейбус, лифт, телефон, электропроигрыватели, электробритвы -

все малое и большое, окружающее нас.

По Максвеллу, электромагнитные колебания должны распространяться со скоростью света. Естественно было прийти к заключению, что свет тоже электромагнитная волна. Он отличается от радиоволн только длиной волны X. Для видимого света \lambda ~5000 А° = 5 x 10-5 сантиметра, то есть много меньше длины радиоволн.

Теория Максвелла была триумфом близкодействия: все электромагнитные воздействия передаются через среду - эфир. Но именно после появления теории Максвелла стала выясняться противоречивость понятия эфира. Возник вопрос: увлекается ли эфир при движении тел? Некоторые эксперименты показывали частичное или полное увлечение эфира, другие же показывали, что эфир вовсе не увлекается. Знаменитый опыт Майкель-сона, поставленный в 1887 году, с колоссальной точностью показал, что скорость света одинакова, если ее измерять вдоль и поперек движения Земли. Движение источника не влияет на скорость распространения света; если свет распространяется в эфире, то отсюда следует, что эфир полностью увлекается Землей. Однако измерение скорости света в текущей воде (опыт Физо, 1853 г.) можно было объяснить только частичным увлечением эфира движением среды.

Эфир умер - да здравствует эфир!

В начале XX века идея близкодействия получила дальнейшее развитие и обоснование в теории относительности и теории тяготения Эйнштейна. Оказалось, что не только электромагнитные, но и гравитационные воздействия распространяются в пустоте со скоростью света. Скорость света стала входить как в электродинамику, так и в механику, и в теорию тяготения.

Противоречие между опытом Физо и опытом Май-кельсона было снято новой формулой сложения скоростей, вытекавшей из теории относительности. Результаты опыта Физо объяснились без всякого предположения о свойствах эфира: скорость движения воды в этом опыте складывается со скоростью света не арифметически, а по более сложной формуле. Отпала необходимость во введении самого понятия эфира, возник новый объект - вакуум, - свободный от противоречий. Эфир умер.

В начале века казалось, что все свойства пустоты исчерпываются гравитационными и электромагнитными воздействиями. Изучение атомных ядер показало, что, кроме сил тяготения и электромагнетизма, есть еще другие силы, удерживающие нейтроны и протоны в ядре, - ядерные. Их тоже с точки зрения близкодействия надо рассматривать как напряженное состояние вакуума. Прибавилось еще одно свойство вакуума.

Но по-настоящему богатство вакуума стало выясняться после применения квантовой механики к электромагнитному полю и к другим полям, характеризующим пары частиц электрон - позитрон, протон - антипротон и так далее. После создания ускорителей заряженных частиц выяснилось, что из пустоты при столкновениях нуклонов может возникнуть целый сноп различных частиц. Вакуум кишит частицами, нужно только их оттуда извлечь! Стало ясно, что вакуум представляет собой удивительно сложную и интересную среду. Его можно было снова назвать эфиром, если бы не боязнь путаницы с наивным противоречивым понятием эфира XIX века.

Квантовая механика вакуумных полей

В конце 20-х годов XX века произошли два события: Поль Дирак построил свое знаменитое уравнение и после этого применил законы квантовой механики к электромагнитному полю.

Уравнение Дирака было обобщением квантовой механики на частицы со скоростями, сравнимыми со скоростью света. Из этого уравнения автоматически получался правильный магнитный момент электрона, вытекали поправки к законам движения электронов в тяжелых атомах. Но самым важным было доказательство существования двойника электрона - античастицы - позитрона, отличающегося от электрона только знаком заряда. В 1932 году это предсказание подтвердилось, позитрон был обнаружен Карлом Андерсоном, и за это он получил Нобелевскую премию.

Поделиться:
Популярные книги

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Провинциал. Книга 1

Лопарев Игорь Викторович
1. Провинциал
Фантастика:
космическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Провинциал. Книга 1

Восход. Солнцев. Книга IV

Скабер Артемий
4. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IV

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7