ПОИСКИ ИСТИНЫ
Шрифт:
Если в катушку вдвинуть, а затем вынуть магнит, в цепи возникнут электромагнитные колебания - магнитная энергия будет переходить в электрическую и наоборот. Чем меньше сопротивление проволоки в катушке, тем медленнее будут затухать колебания. Если катушка сделана из сверхпроводника, колебания практически не будут затухать.
Как угадать решение?
Можно иногда выяснить свойства решения, прежде чем будет построена теория, до того как найдены уравнения, описывающие явления. Это пример более сложного анализа размерностей, чем в случае осциллятора.
Одна из труднейших и нерешенных задач теоретической физики - связь гравитационных и электродинамических явлений.
Если
Первая из них хорошо известна и называется «постоянной тонкой структуры». Подстановка числовых значений дает \alpha = 1/137; \ksi = 5\cdot 1044. Может ли такое большое
число, как \ksi, возникнуть в результате решения каких-нибудь разумных уравнений? Безразмерные числа, которые получаются в физических задачах, обычно имеют порядок нескольких единиц или долей единицы. Поэтому мы вправе ожидать, что величина \ksi войдет в задачу в такой форме, чтобы в результате получилось число порядка единицы. Пока мы применяли здравый смысл. Теперь нужно сделать небольшой интуитивный логический скачок.
Правдоподобно, что в теорию войдет натуральный логарифм \ksi (ln(\ksi) ~100) в комбинации \alpha ln(\ksi) ~ 1. В этом соотношении уже нет больших чисел. Знание такого соотношения облегчает поиски решения.
Поправки к электродинамике в сильном поле
Это более сложная задача, которая даст некоторое представление о важном методе современной физики - графиках Фейнмана. Метод графиков или диаграмм совершил революцию в теоретических расчетах. Суть его состоит в том, что явления изображаются в виде рисунков, которые расшифровываются в конце работы. Даже без расшифровки, только как иллюстрация процессов, эти графики многое разъясняют. Например, такой рисунок означает рождение и уничтожение пары электрон -
позитрон фотоном, если под пунктиром понимать квант, а под линиями с разными стрелками - электрон и позитрон. Точки на графике означают акт взаимодействия кванта с электроном. Каждый акт вносит множитель е, а весь график показывает, как изменяется закон распространения электромагнитного поля из-за временного рождения пары электрон - позитрон.
Вакуум представляет собой сложную среду, в которой могут виртуально - на время - рождаться пары частиц - античастиц. Особенно ясно это станет после прочтения следующей главы. Поэтому нет никаких оснований считать, что уравнения Максвелла останутся линейными для сколь угодно сильных полей. Оценим порядок величины поправок к этим уравнениям.
Поправку к уравнениям Максвелла лучше всего
нивать по изменению безразмерной величины - диэлектрической постоянной, скажем, в электрическом поле.
Отчего изменяется диэлектрическая
На рисунке процесс выглядит так:
Этот рисунок показывает, как изменяется во внешнем поле закон распространения фотона.
Квант на время рождает пару, а электрон и позитрон взаимодействуют с внешним полем (волнистая линия). Каждое включение внешнего поля вносит множитель еЕ, где Е - напряженность внешнего поля.
Теперь нетрудно составить безразмерную комбинацию, дающую поправку к диэлектрической постоянной. Сначала составим безразмерную комбинацию, содержащую поле Е. Так как еЕ имеет размерность энергии, деленной на длину, а величина h/mc - размерность длины, то выражение
безразмерно.
Теперь, глядя на рисунок, нетрудно догадаться, как должна выглядеть поправка к диэлектрической постоянной:
где f - произвольная функция. Заряд е входит в первый множитель квадратично, так как предварительно была рождена пара, а поле Е входит в функцию в безразмерной комбинации \beta. При сравнительно малых полях функцию f можно разложить в ряд. Он начнется с члена ~Е2, ведь Е - вектор, а в ответ может входить
только скалярная величина, то есть только квадрат вектора Е.
Итак,
КВАНТОВАЯ ТЕОРИЯ ЧАСТИЦ И ПОЛЕЙ
Декарт научил нас не только сомневаться, но и решать уравнения.
Ж- Фурье
Мы уже много раз поминали всуе знак h - постоянную Планка. Пора приступить к делу и показать не на словах, а на формулах, как эта величина участвует в квантовых явлениях. Одновременно это послужит лучшему пониманию того, что представляет собой качественный анализ и как он работает. Мы получим самые важные соотношения квантовой механики, пользуясь только качественными соображениями, отбрасывая несущественные трудности. Мы найдем уровни энергии атома, вращающегося тела, осциллятора и обсудим следствия применения квантовой механики к электромагнитному и другим полям.
Квантование атома
Согласно квантовой механике энергия электрона в атоме может принимать только дискретные значения.
Возможные значения энергии электрона в поле ядра с зарядом Z (для водорода Z = 1) даются выражением
Разности значений Еп для двух разных п (п = 1, 2, 3…) определяют с большой точностью возможные частоты наблюдаемых на опыте спектральных линий. Эта формула - результат точного решения уравнения Шрё-дингера для волновой функции, описывающей движение электрона. Посмотрим, к чему приводит качественный анализ.