ПОИСКИ ИСТИНЫ
Шрифт:
Если понимать этот математический факт как физическое явление, то может прийти в голову физическая нелепость: раз позитрон - это электрон, пришедший к нам из будущего, нельзя ли с его помощью узнать, что с нами будет? Нельзя ли научно обосновать удачные предсказания гадалок? Или, поскольку позитрон, родившийся рядом, - электрон, который пришел не только из будущего, но и издалека, нельзя ли увидеть удаленные предметы?
Должен разочаровать сторонников чудесного: релятивистская квантовая механика, так же как и нерелятивистская, не дает никаких научных оснований для экстрасенсорных явлений. Будущее и в этой теории вытекает из прошлого и определяется, в согласии с причинностью, событиями, которые происходили до предсказываемого момента. Видеть на расстоянии можно только с помощью чего-то,
В квантовой физике, так же как и в классической, пока не видно никаких фактов, которые помогли бы понять или обосновать экстрасенсорные явления. Если эти явления существуют, то их обоснование следует искать вне физики.
Как работают физики-теоретики на первой, самой важной стадии работы, когда делается качественный анализ поставленной задачи? Как мы увидим, при этом почти без всяких вычислений получаются грубые соотношения между входящими в задачу величинами, прояс
ВЫЧИСЛЕНИЯ БЕЗ ВЫЧИСЛЕНИЙ
Если математика - это искусство избегать вычислений, то теоретическая физика - это искусство обходиться без математики.
Из разговоров
няется физическая картина явления и возникает проект ожидаемого решения. Следующая стадия - получение точных количественных соотношений с помощью математического аппарата теории - целиком опирается на первую. Не имея предположительного проекта решения, без качественного анализа нельзя приступать к поискам точного результата. Действительно, удается доказать только те утверждения, которые были заранее угаданы. Из этого правила почти не бывает исключений. Анри Пуанкаре писал: «Догадка предшествует доказательству. Нужно ли указывать, что именно так были сделаны все важные открытия?»
Один из главных элементов качественного анализа - решение задачи на упрощенных моделях, в которых отброшено все несущественное, - усложнять решенную задачу несравненно проще, чем сразу решать сложную.
Размерные оценки
В некоторых случаях многое проясняет простой размерный анализ - размерные оценки входящих в задачу величин и возможные соотношения между ними. Докажем, например, теорему Пифагора из размерных сообра
жений. Из размерности следует, что площадь прямоугольного треугольника можно записать как квадрат гипотенузы с2, умноженный на некую функцию угла f (а) (пусть для определенности а есть угол между гипотенузой с и большим из катетов). То же самое относится к площадям двух подобных прямоугольных треугольников, для которых гипотенузами будут катеты а и b исходного треугольника, а его высота, опущенная из прямого угла, есть общий катет. Поэтому
Сокращая на f (а), получаем теорему Пифагора.
Оценим период колебан-ий маятника. Предположим для простоты, что тяжелый груз с массой m подвешен на легком стержне, массой которого можно пренебречь. Прежде всего выясним, какие величины могут входить в выражение для периода колебаний. Поскольку сила, движущая маятник к положению равновесия, - это сила тяжести, то период может зависеть от ускорения силы тяжести g и от массы маятника т. Кроме того, может войти также длина маятника /. Разумеется, такие величины, как температура и вязкость воздуха, несущественны, если мы пренебрегаем затуханием маятника. Не войдет в задачу также и скорость вращения Земли, если мы не учитываем ускорения Кориолиса, которое возникает от движения точки подвески маятника вместе с Землей. Ничего не поделаешь, чтобы упростить задачу, надо знать, чем можно пренебречь! Из трех оставшихся величин - g, m, l -
Масса m не вошла в задачу. Безразмерная константа а не может быть найдена из размерных соображений, можно только сказать, что она не очень велика и не очень мала - порядка единицы. Действительно, эта величина должна быть найдена из решения не написанного нами уравнения движения маятника, а числа, возникающие из решения уравнений, встречающихся в физике, как правило, оказываются порядка единицы. Точное вычисление дает для а величину 2л. Таким образом, мы без вычислений, пользуясь только размерным анализом, получили, что период колебаний маятника не зависит от его массы и пропорционален корню квадратному из его длины. Кроме того, мы нашли также и примерную величину периода колебаний.
Обобщенный осциллятор
Во всех областях физики встречаются задачи, связанные с колебаниями около положения равновесия. Такая система независимо от ее устройства называется «осциллятором» - она осциллирует около положения равновесия. Простейший осциллятор - грузик на пружине или маятник; более сложный - натянутая струна, у нее может быть много типов колебаний: колебания с пучностью посередине (основной тон), с одним узлом, двумя узлами и так далее (обертоны). Струна - набор осцилляторов разной частоты. Аналогичный пример - столб воздуха в органной трубе - его можно заставить колебаться с наинизшей частотой - основной тон, - или с более высокой, когда в некоторых точках воздушного столба частицы воздуха будут неподвижны - аналог узлов в колебаниях струны.
Общее для всех осцилляторов заключается в том, что энергия колебательной системы состоит из двух слагаемых. Одно пропорционально квадрату отклонения осциллятора от положения равновесия - это потенциальная энергия. Если q - величина отклонения от положения равновесия, то потенциальная энергия равна
U=\gamma q2/2.
Коэффициент \gamma называется «жестокостью» осциллятора. Второе слагаемое - кинетическая энергия - может быть записано в виде T = \beta q'2/2, где q' - скорость изменения величины q во времени. Величину в можно назвать «массой осциллятора». Если отклонить осциллятор от положения равновесия на величину q0, то запас потенциальной энергии будет U=\gamma q02/2. Поскольку осциллятор стремится вернуться в состояние равновесия, эта потенциальная энергия начнет переходить в кинетическую, а когда осциллятор будет проходить положение равновесия, вся потенциальная энергия перейдет в кинетическую. При этом скорость осциллятора q' максимальна. По инерции он проскочит положение равновесия, и в точке - q0 вся кинетическая энергия перейдет в потенциальную, и затем опять начнется движение в сторону равновесия. Как бы ни был конкретно устроен осциллятор, его угловая частота колебаний \omega (\omega = 2\pi /Т) выражается следующим образом через жесткость \gamma и массу \beta:
\omega =sqrt(\gamma/\beta) , или Т = 2\pi / sqrt(\gamma/\beta).
В случае маятника роль жесткости играла величина g, а «массы» - длина маятника l. Таким образом, можно рассмотреть сразу все осцилляторы независимо от их физической природы.
Вот еще один осциллятор, совсем непохожий на предыдущие, но и к нему применимы те же формулы. Концы катушки из хорошо проводящей проволоки присоединены к конденсатору. Энергия такой системы состоит из двух слагаемых: энергии магнитного поля в катушке и энергии электрического поля, пропорциональной квадрату заряда Q, который в данный момент находится на обкладках конденсатора. Если заряд Q рассматривать как координату осциллятора, то энергия конденсатора будет играть роль потенциальной энергии. Энергия магнитного поля катушки пропорциональна квадрату силы тока, текущего в данный момент по катушке. Но сила тока равна скорости Q' изменения заряда конденсатора со временем. Энергия магнитного поля пропорциональна Q'2 и соответствует кинетической энергии. Такой осциллятор называется «электрическим колебательным контуром».