ПОИСКИ ИСТИНЫ
Шрифт:
Так как с электроном связан волновой процесс, аналогичная дифракционная картина получится и при прохождении через отверстие пучка электронов. В момент прохождения отверстия поперечная направлению пучка координата электрона будет определена с точностью \del q~d, где d - диаметр отверстия.
Что будет по другую сторону экрана? По законам дифракции после прохождения отверстия получится пучок волн всех направлений, лежащих внутри дифракционного угла \teta=\lambda/d. Но теперь \lambda - это длина волны электрона \lambda = 2 \pi h/ p, где р - импульс электрона в падающем пучке. Отклонение электрона от прежнего направления после прохождения отверстия означает, что электрон получил импульс отдачи \del р в поперечном направлении, причем
Подставляя
Соотношение неопределенности - частный случай и конкретное выражение общего принципа дополнительности, сформулированного Нильсом Бором в 1927 году (см. с. 46). Принципиальная неопределенность некоторых величин есть следствие применения классических понятий к описанию неклассических объектов, квантовая природа микрообъектов дополнительна к их классическому описанию. Но классическое описание результатов наблюдений неизбежно. Все измерительные приборы
166
обязательно классичны, при измерении недопустимы неопределенности, прибор должен давать определенное численное значение измеряемой величины. Особенности наблюдений квантовых объектов мы обсудим немного позже.
Физический смысл волновой функции
Вернемся к нашему опыту с отверстием в экране. Поставим далеко за экраном фотопластинку. Электрон, попадая на нее, вызовет почернение какого-либо зерна эмульсии, после чего его координата определится с точностью до размера зерна. Пучок электронов после дифракции на отверстии зачернит круг с радиусом R=1\lambda/d. Теперь уменьшим интенсивность пучка электронов так, чтобы каждый электрон падал на пластинку, скажем, раз в минуту. После долгого ожидания получится та же картина, что и при интенсивном пучке. Но электроны падали поодиночке, значит, уже одному электрону следует приписать вероятность попасть в то или иное место. Уже для одного электрона эта вероятность распределена вблизи пластинки так, что она максимальна в центре, слегка убывает от центра к радиусу R, а затем за пределами дифракционного пятна начинает резко убывать.
Проследим, как осуществляется соотношение неопределенности в нашем опыте. На экран падают электроны с очень точно определенным импульсом - их поперечный импульс равен нулю, следовательно, поперечная координата полностью неопределенна - теперь мы можем сказать точнее: вероятность до прохождения отверстия найти электрон в любой точке экрана одинакова. После прохождения отверстия поперечный импульс делается неопределенным, зато поперечная координата становится более определенной. Вероятность найти электрон на фотопластинке вне дифракционного пятна мала, неопределенность поперечной координаты \del q~R.
Анализ такого рода опытов привел Макса Борна (1926) к мысли, что волновая функция описывает вероятность того или иного значения координаты или импульса электрона в зависимости от типа поставленного опыта. При этом вероятность определяется квадратом волновой функции. Что помогло прийти к такому заключению?
Вспомним, что теория волновых явлений света - интерференции и дифракции - была разработана задолго до уравнений Максвелла, до того как была понята электромагнитная природа света. Предполагалось только, что источник света испускает волны неизвестной природы, а интенсивность света пропорциональна квадрату той величины, которая колеблется. В современном представлении колеблются во времени
Было естественно и для волн, связанных с частицами, считать, что есть некий волновой процесс, а интенсивность - в нашем случае вероятность - пропорциональна квадрату волновой функции.
Сначала предполагалось, что волновым свойствам частицы соответствует некое реальное физическое поле, подобное электромагнитному полю в световой волне.
Но тогда уже один электрон давал бы в одном акте всю дифракционную картину, между тем он чернит одно зерно. Это только один из доводов; от этого взгляда на природу волнового процесса пришлось отказаться по многим причинам. Таким образом, волновая функция частицы не есть какое-либо физическое поле, она представляет собой запись потенциальных возможностей исхода того или иного последующего наблюдения.
Волновая функция есть максимально полное допустимое описание состояния частицы. Она заменяет классическое состояние, которое задается координатами и скоростями.
Волновая функция, описывающая состояние электромагнитного поля, имеет ту же природу; она не есть электромагнитное или какое-либо другое физическое поле, она определяет только вероятность того или иного значения поля в каждой точке.
Применению квантовой механики к полю посвящен конец этой главы.
Нарушается ли причинность?
Предсказания квантовой механики не дают однозначного ответа, они дают лишь вероятность того или иного результата. Как бы точно мы ни определяли состояние до падения на экран, нельзя предсказать, в какой именно точке фотопластинки окажется электрон. Можно указать только распределение вероятности найти его в той или иной точке.
Не означает ли эта неоднозначность нарушения причинности? Классическая физика не знала неопределенности. Успехи небесной механики в XVII и XVIII веках внушили глубокую веру в возможность однозначных предсказаний. Эту гордость неограниченными возможностями науки выразил Пьер Лаплас (1749-1827): «Дайте мне координаты и скорости всех частиц - и я предскажу будущее Вселенной!» Появление электродинамики не изменило этой веры. Хотя начальное состояние в электродинамике задается не только координатами и скоростями частиц, но и распределением полей, - ее предсказания однозначны.
Предсказания классической статистической физики носят вероятностный характер. Она отвечает, например, на вопрос, какова вероятность найти частицу нагретого газа с той или иной энергией, или, иными словами, предсказывает распределение частиц по энергии. Но есть важное отличие от квантовой механики. Вероятность в статистической физике есть результат сложности системы, результат неточного определения начального состояния. Кроме того, механическая система должна обладать важным свойством - она должна быть «размешиваемой». Это означает, что малая неточность начальных условий за короткое время приводит к размешиванию системы по всей области ее возможных состояний. Но за всем этим стоит однозначность механических законов.
В квантовой механике неопределенность принципиальная, она следует из дополнительности квантовомеха-нических свойств и классического описания. И, кроме того, она проявляется уже для самых простых объектов, для индивидуальных наблюдений за одной частицей.
Главное открытие квантовой механики - вероятностный характер законов Вселенной. На некоторые вопросы нельзя однозначно ответить.
Как мы уже знаем, «задать координаты и скорости всех частиц» невозможно. Самое большее, что можно сделать - задать в начальный момент волновую функцию. Квантовая механика позволяет однозначно найти волновую функцию в любой более поздний момент. Вместо восклицания Лапласа можно произнести с такой же гордостью: «Дайте мне волновую функцию всех частиц - и я предскажу будущее!»