Покоренный электрон
Шрифт:
И это далеко не предел. Электронный микроскоп еще далек от совершенства и пока только «учится» смотреть.
Но учится он быстро, быстрей своего предшественника. За 300 лет оптический микроскоп достиг наибольшего полезного увеличения в тысячу раз. Электронный микроскоп уже дал увеличение в 100 000 раз.
Когда электронный микроскоп приобретет полную меру своей зоркости, он поможет науке еще глубже проникнуть в мир ничтожно-малых существ и даже молекул.
Уже самые первые наблюдения, сделанные с помощью электронного микроскопа, раскрыли загадки, перед которыми наука стояла до сих пор как бы с завязанными
До изобретения электронного микроскопа врачи не знали, почему человек, заболевший туберкулезом, несмотря на самое энергичное лечение, иногда буквально сгорает в несколько недель; в других же случаях он сравнительно быстро поправляется. Иногда туберкулезные палочки оказываются невероятно живучими и зловредными, а иногда настолько слабыми, что гибнут сами собой.
Электронный микроскоп раскрыл секрет этого злейшего врага человека. Оказалось, что туберкулезные бациллы способны надевать на себя панцырь — плотную жировосковую оболочку, которая оберегает их от действия лекарств и защитных сил организма. Тайна панцыря этого маленького чудовища теперь раскрыта, и медицина нашла способ борьбы с опаснейшей болезнью человека.
С помощью электронного микроскопа удалось увидеть бактериофагов. Эти таинственные друзья- невидимки оказались маленькими шариками с длинными хвостиками. Длина хвостика бактериофага равна примерно 100 или 120 миллимикронам, а его круглое тельце раза в 2–3 меньше хвостика. Поперек самой тонкой, паутинной, нити уляжется 30 телец бактериофагов.
«Почуяв» присутствие дизентерийной бактерии, бактериофаги устремляются к ней со всех сторон и облепляют ее, как муравьи гусеницу, забравшуюся в муравейник. Присосавшиеся бактериофаги вызывают быстрый распад болезнетворной бактерии (рис. 78).
Рис. 78. Бактериофаги атакуют возбудителя дизентерии. Увеличение 28 000 раз.
К сожалению, в безвоздушном пространстве электронного микроскопа под воздействием электронного луча гибнет все живое. Поэтому на снимке видны не живые бактериофаги, а мертвые.
Они погибли вместе с дизентерийным микробом в тот момент, когда шли на него в атаку.
Возможно, что ученым удастся преодолеть этот недостаток электронного микроскопа, и тогда можно будет понаблюдать, как движутся бактериофаги и как они нападают и уничтожают микробов.
Особенно поразительные результаты дали наблюдения вирусов. Рисунок 79 изображает вирусы гриппа — оказывается, они имеют вид шариков.
Рис. 79. Снимок вирусов гриппа. Увеличение 35 000 раз.
Об их размерах позволяет судить масштаб, — на рисунке нарисована черная линия, длина которой соответствует одной десятитысячной доле сантиметра — микрону.
Некоторые вирусы, выделенные из зараженных тканей, кристаллизуются почти так же, как кристаллизуются соль, сахар или квасцы. В кристаллическом виде это полупрозрачное белковое вещество. Его можно несколько раз подряд растворять в воде и снова кристаллизировать.
Попадая в живые ткани растений, это вещество заражает его. Кристаллы вируса начинают увеличиваться в числе, проявляя тем самым способность размножаться.
Белковые вещества, из которых состоят вирусы, — это особая форма организованной материи, которая, как предполагают биологи, стоит на грани живой и мертвой природы.
В течение многих веков в науке господствовало убеждение, внушенное религией, будто бы жизнь, все живое, способное питаться, дышать, расти и размножаться, есть творение божественных сил и что оно резко отличается от неживого, неспособного питаться, расти и размножаться.
Идеалистическая философия учила, что между живой и мертвой природой лежит непреодолимая пропасть, разграничивающая эти два противоположных мира. Никакого звена, связывающего живое с неживым, она не допускала.
Против порочного идеалистического мировоззрения, увлекавшего науку на ложный путь, страстно боролся Владимир Ильич Ленин. Еще в 1908 году он писал: «Все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи». [23]
23
В. И. Ленин, Соч., т. 14, стр. 265
Электроника заставила воочию убедиться в справедливости гениального предвидения В. И. Ленина. Она подвела исследователей к грани между живой и неживой природой, и никакой пропасти там не оказалось. Грань между живым и неживым действительно условна, относительна, подвижна.
Изучение нуклеопротеидов, возможно, позволит ученым разгадать еще одну тайну природы — создать своими руками молекулы живого белка, способного питаться, дышать, расти и размножаться.
И это будет величайшим открытием, грандиозной победой человеческого ума, равной которой не было за всю историю науки.
Глава восьмая. Электрон в разреженном газе
Тепловые источники света
У разрядной трубки есть еще и четвертый потомок, история которого начинается с первых электрических опытов Ломоносова и Петрова. Эти ученые наблюдали свечение разреженного газа под действием электрических разрядов.
Другие исследователи меняли состав газов в трубках, через которые пропускали электрический ток, и убедились, что каждый газ дает особый, только одному ему свойственный цвет свечения.
Свечение газов было самым первым явлением, которое заметили ученые в разрядных трубках. Но именно этой удивительной игре света, струящегося между катодом и анодом, практического применения долгое время они не находили.
Было сделано несколько робких попыток приспособить разрядную трубку для освещения, но эти попытки успеха не имели — изобретателей отпугивало применение высокого напряжения, которое приходилось подавать на электроды трубки.
Затем Лодыгиным была изобретена электрическая лампочка накаливания. Над ее усовершенствованием трудились сотни инженеров и изобретателей. Лампочка прочно вошла в быт. Интерес к свечению газов в разрядных трубках на время ослабел.