Получение энергии. Лиза Мейтнер. Расщепление ядра
Шрифт:
ЭЛЕКТРОСКОП
Электроскоп (см. рисунок 1) — это прибор для обнаружения электрического заряда. Он состоит из двух листов фольги — обычно из золота или алюминия, — подвешенных к металлическому стержню. Устройство размещается в стеклянном или металлическом сосуде. Стержень выступает из сосуда с одной из сторон, а при воздействии на него заряженным телом два листа заряжаются и вследствие электростатической силы взаимно отталкиваются. Таким образом можно было установить, имеет тот или иной объект электрический заряд. Первый электроскоп был сконструирован Уильямом Гильбертом (1544- 1603), английским физиком, пионером изучения свойств магнитов. Когда листы в электроскопе возвращались в первоначальную
РИС. 1
Скоро был сделан вывод о том, что поскольку воздух слегка ионизирован, заряд может переходить от металлических листов к стенкам электроскопа. Однако существовали и сомнения, которые необходимо было развеять: почему воздух ионизируется? В1900 году Чарльз Вильсон (1869-1959), шотландский физик, получивший в 1927 году Нобелевскую премию за разработку туманной камеры, смог установить, что ионизация воздуха происходит вследствие естественной радиации, которая есть повсюду. Поэтому в электроскопах мы можем наблюдать, что заряженные листы постепенно возвращаются в начальное положение (см. рисунок 2). В присутствии радиоактивных веществ этот процесс ускоряется, и чем выше интенсивность радиации, тем он быстрее. Так электроскоп превратился в инструмент для измерения фоновой радиации радиоактивных материалов.
РИС. 2
Листы электроскопа, вид сбоку. Проводящие пластинки или листы, имеющие одноименный электрический заряд, взаимно отталкиваются.
ОТКРЫТИЕ ЯДРА
Мейтнер не стала исследовать, что именно вызывает рассеяние альфа-частиц. А Резерфорд, напротив, был одержим поиском ответа на этот вопрос, что привело его к исключительному открытию, — мы говорим об открытии атомного ядра в 1911 году. Взяв тончайшую металлическую пластину и приступив к ее бомбардировке альфа-частицами, он сделал следующий прогноз: если предложенная Томсоном пудинговая модель атома верна, то воздействующие на пластинку частицы не должны отклоняться от своей траектории. Электроны, плавающие в положительно заряженном облаке, имеют слишком небольшой размер, чтобы вызвать отклонение альфа-лучей от линейной траектории. Однако когда опыт, поставленный Марсденом и Гейгером (см. рисунок 3) указал на отклонение альфа-частиц, Резерфорд сделал вывод: «Если принять во внимание данное свидетельство в общем виде, самым простым является предположение, что атом имеет центральный заряд, расположенный в очень малом объеме». Так было открыто атомное ядро (см. рисунок 4).
РИСУНОК 3: Резерфорд предложил новую модель атома, согласно которой его ядро, в котором сконцентрированы масса и положительный заряд, располагается в центре атома. Это позволяло объяснить, почему некоторые альфа-частицы, направленные на металлическую поверхность, отскакивают назад.
РИСУНОК 4: Опыт, позволивший Резерфорду открыть атомное ядро, состоял в бомбардировке тонкой золотой фольги альфа-частицами.
АЛЬФА-РАСПАД
Эрнеста Резерфорда называют отцом ядерной физики. В1902 году он открыл, что радиоактивность происходит из самих атомов. Вместе с Фредериком Содди Резерфорд пришел к выводу, что «радиоактивность — явление, происходящее в атомах, с сопутствующими химическими изменениями, при которых появляются новые типы материи». То есть радиоактивные атомы подвергаются распаду, а испускаемая радиация является следствием разложения атомов, способным спонтанно привести атом к распаду. До 1911 года не было ясно, что этот распад затрагивает только ядро. Альфа-лучи должны были состоять из частиц атома, при их испускании они меняли саму природу атома: при испускании альфа-частиц такой элемент, как уран, превращался в торий. Альфа-распад (см. рисунок) представляет собой испускание из атомного ядра одной частицы, состоящей из двух протонов и двух нейтронов, идентичной, таким образом, ионизированному ядру гелия. Альфа-распад начинается спонтанно в энергетически нестабильных ядрах с большим количеством протонов и нейтронов — другими словами, в результате действия сил отталкивания внутри ядра, как это происходит с ураном.
Химическая трансмутация элемента после испускания альфа-частицы состоит, ввиду потери двух протонов и двух нейтронов, в изменении количества ядерных частиц и пропорции нейтронов и протонов в ядре.
ВСТРЕЧА С ПЛАНКОМ
После смерти Больцмана в сентябре 1906 года нужно было найти ему преемника, который мог бы занять место ученого в Венском университете. Администрация университета предложила кандидатуру Макса Планка. Он в это время возглавлял в Берлине кафедру теоретической физики и не планировал менять место работы, но все же решился поехать в Вену в знак уважения к памяти Больцмана. Благодаря этой поездке состоялось его знакомство с Мейтнер.
Лиза в то время не знала работ Планка и его революционной гипотезы о квантовании энергии. Исследовательница так описывала ситуацию:
«Я часто спрашивала себя, почему Больцман никогда ни словом не упомянул [квантовую теорию Макса Планка]. Надо сказать, что я посещала его лекции в течение пяти лет после этого открытия. Однако нужен был длительный период времени для принятия квантовой теории. При этом Планк не смог бы разработать свою теорию, если бы не принял атомную теорию Больцмана, а также не воспользовался введенными им статистическими методами».
После этого знакомства Мейтнер решила оставить Вену и уехать в Берлин, чтобы учиться у Планка, в надежде, что это откроет перед ней новые горизонты.
ГЛАВА 3
Открытие радиоактивных элементов
Открытие протактиния, элемента с высокой радиоактивностью, было одним из самых заметных достижений Лизы Мейтнер и Отто Гана в Берлине. Эта пара ученых стала одной из основных команд той эпохи, исследовавших радиоактивность.
В 1907 году Макс Планк был уже уважаемым ученым. По мере того как его идеи распространялись в научном сообществе, росло и количество молодых исследователей (включая Мейтнер), которые хотели слушать лекции ученого в Берлинском университете. Планк стал учителем Лизы, хотя его характер очень отличался от характера Больцмана. Планк был серьезным, сдержанным, сухим и лаконичным — полная противоположность энтузиасту-Больцману. Мейтнер писала:
«...должна признать, что в начале была немного разочарована лекциями Планка, несмотря на их чрезвычайную ясность. [...] Иногда они выглядели довольно бесцветными в сравнении с Больцманом».
Планк не возражал против присутствия женщин в университете, хотя считал, что женщина, обладающая способностями и интересом к теоретической физике, — скорее исключение из правила. Это не замедлило проявиться в самом начале его знакомства с Мейтнер. Лиза рассказывала об этих первых встречах так:
«Когда я записалась в Берлинский университет, чтобы слушать лекции Планка, он принял меня очень любезно и почти сразу пригласил к себе. Когда я впервые побывала у него дома, он сказал мне: «Но у тебя же уже есть докторская степень! Чего еще ты можешь желать?» На это я ответила, что хотела бы достигнуть настоящего понимания физики. Тогда он дал мне краткий дружеский ответ и больше не углублялся в данный вопрос. Я сделала вывод, что он был не очень высокого мнения о женщинах, занимавшихся наукой. Предполагаю также, что в какой-то степени для той эпохи он был прав».