Чтение онлайн

на главную

Жанры

Шрифт:

Весьма замечательно, что в приведенном выше описании идеальной тепловой машины ни разу не упоминаются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сгорает уголь. Предложенная Сади Карно модель отражает лишь конечный результат горения: возможность поддержания разности температур между двумя источниками.

В 1850 г. Клаузиус дал новое описание цикла Карно — с точки зрения закона сохранения энергии. Он обнаружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно формула для теоретического кпд отражают проблему, специфическую для тепловых машин: необходимость процесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находящимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса,

выражающие превращения энергии, оказались теперь объединенными новыми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.

Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, неограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с другой стороны, перенос тепла, причем то и другое связано между собой отношением эквивалентности. Эта эквивалентность действует в обоих отношениях. Обратным ходом та же машина может восстановить начальную разность температур, затратив произведенную работу. Невозможно построить тепловую машину только с одним источником тепла.

Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального значения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффективности тепловых машин.

Но с XVIII в. статус идеализации изменился. Опираясь на закон сохранения энергии, новое естествознание стало претендовать на описание не только идеализаций, но и самой природы, включая «потери». Возникла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько снижают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термодинамики.

4. От технологии к космологии

Как мы уже знаем, вопрос, поднятый Карно и Клаузиусом, привел к теории идеальных тепловых машин, основанной на сохранении энергии и компенсации. Кроме того, стало возможным ставить (и решать) новые проблемы, такие, как диссипация энергии. Уильям Томсон, питавший глубочайшее уважение к работе Фурье, быстро осознал важность этой проблемы и в 1852 г. первым сформулировал второе начало термодинамики.

На теплопроводность, математическую теорию которой построил Фурье, Карно указал как на возможную причину энергетических потерь в тепловом двигателе. Так цикл Карно, уже более не идеальный, а «реальный», стал точкой конвергенции двух универсалий, открытых в XIX в.: превращения энергии и теплопроводности. Сочетание этих двух открытий привело Томсона к формулировке его нового принципа: существования в природе универсальной тенденции к деградации механической энергии. Обращаем особое внимание на слово «универсальная», перекликающееся со словом «универсум», т. е. весь мир, или Вселенная.

Мир Лапласа был идеальным вечным двигателем. Начиная с Томсона, космология перестает быть только отражением нового идеального теплового двигателя, но и включает последствии необратимого распространения тепла в мире, в котором энергия сохраняется. Этот мир космология Томсопа описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации. Соответственно уменьшились различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия — «тепловой смерти». В соответствии с законом Фурье при достижении миром конечного состояния исчезнут всякие различия в температуре, способные производить механический эффект.

Томсон совершил головокружительный прыжок от технологии тепловой машины к космологии. В своей формулировке

второго начала термодинамики он использовал научную терминологию середины XIX в.: «сохранение энергии», «тепловой двигатель», «закон Фурье». Немаловажную роль сыграла и культурная среда, в которой было совершено открытие. Общепризнано, что в XIX в. проблема времени приобрела новое значение. Существенную роль времени начали отмечать во всех областях: в геологии, биологии, языкознании, социологии и этике. Вместе с тем интересно отметить, что та специфическая форма, в которой время вошло в физику, именно как тенденция к однородности и смерти, в большей мере напоминает о древних мифологических и религиозных архетипах, чем о все нарастающем усложнении и многообразии, описываемыми биологией и социальными науками. Возвращение этих древних тем можно рассматривать как культурный отзвук социальных и экономических сдвигов времени. Быстрая трансформация технологического способа взаимодействия с природой, постоянно нарастающий темп изменения, с которым столкнулся XIX век, не могли не вызвать тревогу. Это беспокойство не оставляет и нас и принимает самые различные формы в виде повторяющихся призывов к «нулевому росту» общества или к мораторию на научные исследования до провозглашения «научных истин» относительно нашего распадающегося мира. Современные знания в области астрофизики все еще остаются скудными и во многом проблематичными. Трудность продвижения в этой области физики отчасти обусловлена тем, что в астрофизике гравитационные эффекты играют существенную роль и проблемы требуют одновременного использования термодинамики и теории относительности. Тем не менее большинство работ в этой области с удивительным единодушием предсказывает грядущую катастрофу... Одна из последних книг на эту тему рисует такую картину:

«Неприятная истина состоит, по-видимому, в том, что неумолимый распад нашей Вселенной, насколько мы можем судить, неизбежен; организация, охватывающая всякую упорядоченную деятельность от людей до галактик, медленно, но неизбежно деградирует и может даже кануть в небытие в результате всеобщего гравитационного коллапса»[129].

Другие более оптимистичны. В превосходной научно-популярной статье об энергии Вселенной Фримен Дайсон пишет следующее:

«Вполне возможно, однако, что жизнь играет более важную роль, чем принято думать. Возможно, что жизни суждено выстоять против всех невзгод, преобразуя мир для собственных целей. И структура неодушевленного мира может оказаться не столь уж далекой от потенциальностей жизни и разума, как имеют обыкновение полагать ученые XX в.»[130]

Несмотря на существенный прогресс, достигнутый Хокингом и другими исследователями[131], наше знание крупномасштабных преобразований во Вселенной все еще остается неадекватным.

5. Рождение энтропии

В 1865 г. настал черед совершить скачок от технологии к космологии для Клаузиуса. Сначала он лишь переформулировал свои более ранние выводы, но при этом ввел новое понятие — энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, или к теплопроводности, описанной Фурье.

Мы уже знакомы с таким понятием, как «энергия». Она является функцией состояния системы, т. е. функцией, зависящей только от значений параметров (давления, объема, температуры) , которые однозначно определяют состояние[132]. Но нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карно и «диссипированной» энергией, теряемой необратимо.

Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.

Клаузиус, по-видимому, намеревался лишь записать в новом виде очевидное требование, состоящее в том, что в конце цикла тепловая машина должна возвращаться в начальное состояние. В первом определении энтропии основной акцент делался на сохранении: в конце каждого цикла, идеального или с потерями, функция состояния системы — энтропия — возвращается к своему начальному значению. Но параллель между энтропией и энергией заканчивается, стоит лишь нам отказаться от принятых идеализаций[133]

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР