Порядок из хаоса
Шрифт:
2. Линейная термодинамика
В 1931 г. Ларс Онсагер открыл первые общие соотношения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотношения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воздействует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной проверке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через систему.
Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, происходят
Соотношения взаимности Онсагера были первым значительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой науки не некая плохо определенная «ничейная» земля, а заслуживает внимания ничуть не меньше, чем предмет традиционной равновесной термодинамики, не уступая последнему в плодотворности. Если равновесная термодинамика была достижением XIX в., то неравновесная термодинамика возникла и развивалась в XX в. Вывод соотношений взаимности Онсагера ознаменовал сдвиг интересов от равновесных явлений к неравновесным.
Нельзя не упомянуть и о втором общем результате линейной неравновесной термодинамики. Нам уже приходилось говорить о термодинамических потенциалах, экстремумы которых соответствуют состояниям равновесия, к которому необратимо стремится термодинамическая эволюция. Для изолированной системы потенциалом является энтропия S, для замкнутой системы с заданной температурой — свободная энергия F. Термодинамика слабо неравновесных систем также вводит свой термодинамический потенциал. Весьма интересно, что таким потенциалом является само производство энтропии Р. Действительно, теорема о минимуме производства энтропии утверждает, что в области применимости соотношений Онсагера, т. е. в линейной области, система эволюционирует к стационарному состоянию, характеризуемому минимальным производством энтропии, совместимым с наложенными на систему связями. Эти связи определяются граничными условиями. Например, может возникнуть необходимость поддерживать две точки системы при заданных различных температурах или организовать поток, который бы непрерывно подводил в реакционную зону исходные вещества и удалял продукты реакции.
Стационарное состояние, к которому эволюционирует система, заведомо является неравновесным состоянием, в котором диссипативные процессы происходят с ненулевыми скоростями. Но поскольку это состояние стационарно, все величины, описывающие систему (такие, как температура, концентрации), перестают в нем зависеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. Но тогда изменение энтропии во времени становится равным нулю: dS=0. Как мы уже знаем, полное приращение энтропии состоит из двух членов: потока энтропии deS и положительного производства энтропии diS; поэтому из равенства dS==0 следует, что deS=—diS<0. Поступающий из окружающей среды поток тепла или вещества определяет отрицательный поток энтропии deS, который компенсируется производством энтропии diS из-за наобратимых процессов внутри системы. Отрицательный поток энтропии deS означает, что система поставляет энтропию внешнему миру. Следовательно, в стационарном состоянии активность системы непрерывно увеличивает энтропию окружающей среды. Все сказанное верно для любых стационарных состояний. Но теорема о минимуме производства энтропии утверждает нечто большее: то выделенное стационарное состояние, к которому стремится система, отличается тем, что в нем перенос энтропии
Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящихся к минимальному уровню активности, совместимому с питающими их потоками. Из того, что линейная неравновесная термодинамика так же, как и равновесная термодинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эволюции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Каковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями. В результате реакция такой системы на любое изменение граничных условий становится предсказуемой.
Мы видим, что в линейной области ситуация остается, по существу, такой же, как и в равновесной. Хотя производство энтропии не обращается в нуль, оно тем не менее не мешает необратимому изменению отождествляться с эволюцией к состоянию, полностью выводимому из общих законов. Такое «становление» неизбежно приводит к уничтожению любого различия, любой специфичности. Карно или Дарвин? Парадокс, на который мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных условий наряду с возникающей при этом дезорганизацией — с другой, все еще существует зияющая брешь.
3. Вдали от равновесия
У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все попытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозможным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоянию, но это состояние, вообще говоря, уже не определяется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо неравновесных состояний).
Отсутствие потенциальной функции ставит перед нами вопрос: что можно сказать относительно устойчивости состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор определяется минимумом потенциала (например, производство энтропии), его устойчивость гарантирована. Правда, флуктуация может вывести системы из этого минимума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в котором системы, эволюционируя, переходят в статичное состояние, установленное для них раз и навсегда.
Но когда термодинамические силы, действуя на систему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчивость стационарного состояния или его независимость от флуктуации было бы опрометчиво. За пределами линейной области устойчивость уже не является следствием общих законов физики. Необходимо специально изучать, каким образом стационарное состояние реагирует на различные типы флуктуации, создаваемых системой или окружающей средой. В некоторых случаях анализ приводит к выводу, что состояние неустойчиво. В таких состояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, который может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии.
Термодинамика позволяет высказать исходное общее заключение относительно систем, в поведении которых могут обнаружиться отклонения от того типа порядка, который диктуется равновесным состоянием. Такие системы должны быть сильно неравновесными. В тех случаях, когда возможна неустойчивость, необходимо указать порог, расстояние от равновесия, за которым флуктуации могут приводить к новому режиму, отличному от «нормального» устойчивого поведения, характерного для равновесных или слабо неравновесных систем.