Чтение онлайн

на главную

Жанры

Шрифт:

В этой связи мы хотели бы подчеркнуть, что неравновесность обретает ныне новое, космологическое измерение. Без неравновесности и связанных с ней необратимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в заметных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.

Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопревращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая протон, нестабильны (правда, время жизни протона достигает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать фундаментальному уровню описания,

низводится до роли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.

Аналогичным трансформациям подверглась и теория относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инструментом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимости. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимости распространилась на всю физику — от теории элементарных частиц до космологии.

Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслугой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следует путать со стохастическими процессами, описывающими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эволюционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.

Мы видим, что за пятьдесят лет, прошедших со времени создания квантовой механики, исследования неравновесных процессов показали, что флуктуация, стохастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неоднократно говорили о том, что продолжающееся ныне концептуальное перевооружение физики ведет от детерминистических обратимых процессов к процессам стохастическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода промежуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведены некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с помощью скрытых переменных мы считаем, что необходимо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.

Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ

1. Вероятность и необратимость

Мы увидим, что почти всюду физик очистил свою науку от использования одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в нескольких важных случаях одностороннее время и односторонняя причинность возникали, словно по волшебству, но, как будет показано, всякий раз в поддержку какой-нибудь ложной теории. Г. Н. Льюис[196]

Закон монотонного возрастания энтропии — второе начало термодинамики — занимает, как мне кажется, высшее положение среди законов природы. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,— ну что же, и экспериментаторам случается ошибаться. Но если окажется, что ваша теория противоречит второму началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец. А. С. Эддингтон[197]

Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодинамикой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в конфликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, матери современного естествознания, в пользу какого-нибудь варианта термодинамики? «Энергетисты», пользовавшиеся большим влиянием к конце XIX в., считали отказ от динамики необходимым. Нельзя ли как-нибудь «спасти» динамику, сохранить второе начало и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом динамикой?

Мы уже упоминали об ответе на этот вопрос, который был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероятность: энтропия возрастает потому, что возрастает вероятность. Сразу же подчеркнем, что в этом плане второе начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей превосходной книге

«Этот правый, левый мир» Мартин Гарднер пишет: «Некоторые явления идут в одну сторону не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма маловероятно»[198]. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения придерживаются некоторые современные физики. Но Макс Планк считал иначе:

«Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и химиков в наблюдательном или экспериментальном искусстве. Содержанию второго начала нет дела до экспериментирования, оно гласит in nuce (в самом главном): «В природе существует величина, которая при всех изменениях, происходящих в природе, изменяется в одном и том же направлении». Выраженная в таком общем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, существуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в настоящее время. Пределы для этого начала, если только они действительно существуют, необходимо должны находиться в той же области, в которой находится и его содержание, — в наблюдаемой природе, а не в наблюдающих людях. Обстоятельства нисколько не изменяются от того, что для вывода начала мы пользуемся человеческим опытом; для нас это вообще единственный путь для исследования законов природы»[199].

Взгляды Планка не получили особого распространения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе начало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точку зрения отражает, например, знаменитое высказывание Борна: «Необратимость есть результат вхождения элемента нашего незнания в основные законы физики»[200].

В настоящей главе мы намереваемся осветить некоторые основные этапы в развитии интерпретации второго начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы изложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вывод, к которому мы придем, совпадает с точкой зрения Планка. Мы покажем, что второе начало, отнюдь не разрушая величественное здание динамики, дополняет его существенно новым элементом.

Рис. 23. Модель урн Эренфестов. N шаров распределены между двумя урнами А и В. Через равные промежутки времени (которые можно принять за единицу) из урны, выбираемой наугад, извлекается шар и кладется в другую урну. В момент времени п в урне А находится k шаров, а в урне В остальные N—k шаров.

Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами[201]. Рассмотрим N предметов (например, шаров), распределенных между двумя контейнерами (урнами) А и В. Предположим, что через одинаковые промежутки времени (например, через секунду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть через п шагов в урне А находится k шаров, а в урне В — остальные N—k шаров. Тогда на (n+1)-ом шаге в урне A может оказаться либо k—1, либо k+1 шаров и вероятность перехода равна k/N для k->k—1 и 1—k/N для k->k+1. Предположим, что мы продолжаем извлекать шары наугад из урн и перекладывать их в другую урну. Мы ожидаем, что в результате перекладывания шаров установится наиболее вероятное их распределение по урнам в смысле Больцмана. Если число шаров N достаточно велико, то шары с наибольшей вероятностью распределятся между урнами А и В поровну: в каждой урне по N/2 шаров. В этом нетрудно убедиться, проделав соответствующие вычисления или выполнив экспериментальную проверку.

Поделиться:
Популярные книги

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Невеста напрокат

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Невеста напрокат

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Младший научный сотрудник

Тамбовский Сергей
1. МНС
Фантастика:
попаданцы
альтернативная история
6.40
рейтинг книги
Младший научный сотрудник