Порядок из хаоса
Шрифт:
1. Энтропия и стрела времени
В предыдущей главе мы описали некоторые трудности микроскопической теории необратимых процессов. Ее связь с динамикой, классической или квантовой, не может быть простой в том смысле, что необратимость и сопутствующее ей возрастание энтропии не может быть общим следствием динамики. Микроскопическая теория необратимых процессов требует наложения дополнительных, более специфических условий. Мы вынуждены принять плюралистический мир, в котором обратимые и необратимые процессы сосуществуют. Но такой плюралистический мир принять нелегко.
В своем «Философском словаре» Вольтер утверждал по поводу предопределения следующее: «...все управляется незыблемыми законами ... все заранее
Сколь ни убедительно звучат такого рода априорные аргументы, они тем не менее могут вводить в заблуждение. Рассуждение Вольтера выдержано в ньютоновском духе: природа всегда подобна самой себе. В этой связи небезынтересно отметить, что ныне мы находимся в том самом странном мире, о котором с такой иронией писал Вольтер. К своему изумлению, мы открыли качественное многообразие природы.
Неудивительно поэтому, что люди в нерешительности колебались между двумя крайностями: исключением необратимости из физики (сторонником этого направления был, как мы уже отмечали, Эйнштейн[218]) и признанием необратимости как важной особенности природных явлений (выражителем этого направления стал Уайтхед со своей концепцией процесса). В настоящее время ни у кого не вызывает сомнений (см. гл. 5 и 6), что необратимость существует на макроскопическом уровне и играет важную конструктивную роль. Следовательно, в микроскопическом мире должно быть нечто проявляющееся на макроскопическом уровне, подобное необратимости.
Микроскопическая теория должна учитывать два тесно связанных между собой элемента. Прежде всего в своих попытках построить микроскопическую модель энтропии (H-функции Больцмана), монотонно изменяющейся со временем, мы должны следовать Больцману. Именно такое изменение должно задавать стрелу времени. Возрастание энтропии изолированной системы должно выражать старение системы.
Стрелу времени нам часто не удается связать с энтропией рассматриваемого процесса. Поппер приводит простой пример системы, в которой развивается односторонне направляемый процесс и, следовательно, возникает стрела времени.
«Предположим, что мы отсняли на кинопленку обширную водную поверхность. Первоначально она покоилась, а затем в воду бросили камень. Просматривая отснятый при этом фильм от конца к началу, мы увидим сходящиеся круговые волны нарастающей амплитуды. Сразу же после того, как гребень волны достигнет наибольшей высоты, круглая область невозмущенной воды сомкнется в центре. Такую картину нельзя рассматривать как возможный классический процесс Для создания ее потребовалось огромное число когерентных генераторов волн, расположенных далеко от центра, действие которых для того, чтобы быть объяснимым, должно выглядеть (как в фильме) так, словно всеми генераторами мы управляем из центра. Но если мы захотим просмотреть от конца к началу исправленный вариант фильма, то столкнемся с теми же трудностями»[219].
Действительно, какими бы техническими средствами мы ни располагали, всегда будет существовать определенное расстояние от центра, за пределами которого мы не сможем генерировать сходящуюся волну. Однонаправленные процессы существуют. Нетрудно представить себе и многие другие процессы того же типа, что и процесс, рассмотренный Поппером —мы никогда не увидим, как энергия собирается со всех сторон к звезде, — или обратные ядерные реакции, протекающие с поглощением энергии.
Кроме того, существуют и другие стрелы времени, например космологическая стрела (о
В этой связи нельзя не вспомнить знаменитую дискуссию между Эйнштейном и Ритцем, опубликованную в 1909 г.[221]. Совместная публикация Эйнштейна и Ритца крайне необычна. Она весьма коротка — занимает менее печатной страницы. По существу, в ней лишь констатируется расхождение во взглядах. Эйнштейн считал, что необратимость является следствием введенных Больцманом вероятностных понятий. Ритц же отводил решающую роль различию между запаздывающими и опережающими волнами. Это различие напоминает нам аргументацию Поппера. Волны, которые мы наблюдаем в пруду, — запаздывающие. Они появляются после того, как мы бросили камень.
И Эйнштейн и Ритц существенно обогатили дискуссию о необратимости, но каждый из них акцентировал внимание лишь на каком-то одном аспекте проблемы. В гл. 8 мы упоминали о том, что вероятность уже предполагает направленность времени и, следовательно, не может служить основанием при выводе стрелы времени. Мы упоминали и о том, что исключение таких процессов, как опережающие волны, не обязательно приводит к формулировке второго начала. Необходимы аргументы как одного, так и другого типа.
2. Необратимость как процесс нарушения симметрии
Прежде чем обсуждать проблему необратимости, полезно напомнить, как можно вывести другой тип нарушения симметрии, а именно нарушение пространственной симметрии. В уравнениях реакции с диффузией ту же роль играют «левое» и «правое» (уравнения диффузии инвариантны относительно инверсии пространства r->—r). Тем не менее, как мы знаем, бифуркации могут приводить к решениям, симметрия которых нарушена. Например, концентрация какого-нибудь из веществ, участвующих в реакции, справа может оказаться больше, чем слева. Симметрия уравнений реакций с диффузией требует лишь, чтобы решения с нарушенной симметрией появлялись парами, а не поодиночке.
Разумеется, существует немало уравнений реакции с диффузией без бифуркаций и, следовательно, без нарушений пространственной симметрии. Нарушение пространственной симметрии происходит лишь при весьма специфических условиях. Это обстоятельство крайне важно для понимания нарушений временной симметрии, которая представляет для нас особый интерес. Нам необходимо найти системы, в которых уравнения движения допускают существование режимов с низкой симметрией.
Как известно, уравнения движения инвариантны относительно обращения времени t– >—t. Однако решения этих уравнений могут соответствовать эволюции, в которой симметрия относительно обращения времени утрачивается. Единственное условие, налагаемое симметрией уравнений, состоит в том, что решения с нарушенной временной симметрией должны встречаться парами. Например, если мы находим решение, стремящееся к равновесному состоянию в далеком будущем (а не в далеком прошлом), то непременно должно существовать решение, которое стремится к равновесному состоянию в далеком прошлом (а не в далеком будущем). Решения с нарушенной симметрией возникают только парами.