Чтение онлайн

на главную

Жанры

Предчувствия и свершения. Книга 2. Призраки
Шрифт:

Мы не подчеркивали раньше, сколь большую роль играли такие локальные свойства симметрии в посленьютоновском развитии физики. Для простоты мы пользовались более привычным языком. Но для дальнейшего необходимо перейти на язык симметрии и описать на нем несколько известных явлений. Локальные изменения симметрии пространства, вызванные присутствием больших масс, приводят к появлению гравитационных сил. Вот как это происходит. Пространство вдали от больших масс однородно и изотропно. Но вблизи больших масс оно теряет свою однородность и изотропность. Вместо них возникает локальная сферическая симметрия. По мере удаления от искажающей массы локальная сферическая симметрия становится все менее заметной, она ослабевает, плавно переходя в глобальную симметрию, в однородное и изотропное пространство. Именно появление локальной сферической симметрии вызывает возникновение гравитационных

сил.

Иными словами, локальная сферическая симметрия пространства, вызванная присутствием некоторого материального тела, эквивалентна гравитационному полю, полю тяготения этого тела. Величина локального искажения симметрии, а значит, и сила поля тяготения пропорциональна массе этого тела. Эта величина и эта сила убывают по закону Ньютона пропорционально квадрату расстояния. Поэтому сила тяготения и локальные искажения симметрии быстро становятся очень малыми.

Так, с точки зрения симметрии, можно объяснить суть общей теории относительности.

Подобным образом можно пояснить и возникновение сил в теории Максвелла. Электрический заряд вызывает локальную симметрию — сферическую симметрию пространства, примыкающего к нему. Следствием является возникновение электростатического поля и соответствующей кулоновской силы, действующей на другие заряды. По мере удаления от рассматриваемого заряда вызванная им локальная симметрия и окружающее его поле ослабевают.

Теперь мы можем высказать гипотезу: при возникновении локальной симметрии, искажающей глобальную симметрию природы, всегда возникают соответствующие поля и связанные с ними силы. К этой гипотезе мы еще вернемся, но прежде обратим внимание на то, что понятие симметрии, позволившее по-новому осознать структуру теории Максвелла и теории относительности, не дает возможности продвинуться в понимании природы элементарных частиц. Для этого нужно идти дальше.

Эйнштейн отлично понимал, что радикальное изменение теории неизбежно. Но главное направление развития физики пошло не по пути развития теории поля, избранному Эйнштейном, а в направлении дальнейшего совершенствования квантовой механики, вероятностный характер которой казался ему сомнительным. Продвигаясь по этому направлению, физики, главным образом это были молодые ученые, добивались одного успеха за другим. Дирак первым объединил принципы квантовой механики с требованиями специальной теории относительности. Наградой ему было предсказание существования новой частицы, имевшей массу электрона и обладавшей зарядом, равным по величине заряду электрона. Это была удивительная частица: знак ее заряда был противоположен знаку заряда электрона. Это был положительный электрон, призрак которого беспокоил еще Эйнштейна. Но этим не ограничивались поразительные свойства новой частицы. Она должна была двигаться навстречу действующей на нее силе. Лишь со временем Дирак понял, что такое свойство может быть присуще только частице с отрицательной массой.

Так в науку вошла первая античастица. Впоследствии выяснилось, что в природе существует еще один тип симметрии: симметрия частиц и античастиц. Каждой частице, имеющей спин, отличный от нуля, соответствует античастица. Античастицы обладают отрицательной массой, равной по величине положительной массе соответствующей частицы. Если частица обладает электрическим зарядом, то ее античастица имеет заряд той же величины, но противоположного знака.

По мере углубления знаний мы убеждаемся, что элементарные частицы обладают многими, ранее неизвестными нам характеристиками. И аналогичными свойствами обладают их античастицы. Все характеристические величины, определяющие свойства элементарных частиц и их античастиц, принято называть их квантовыми числами. Если частица не обладает данной характеристикой, то для нее соответствующее квантовое число равно нулю. Величины, характеризующие микрочастицы, меняются только скачками (квантами). Наименьшая величина такого скачка принята равной 1/2 и может быть как положительной, так и отрицательной. С этим мы уже знакомы.

При встрече частицы с ее античастицей обе они исчезают, аннигилируют, порождая при этом другие частицы. Например, при встрече электрона с его античастицей — позитроном вместо них возникают два фотона. Здесь мы встречаемся с предсказанным теорией относительности слиянием двух законов сохранения — закона сохранения энергии и закона сохранения вещества — в единый закон сохранения. Ведь при аннигиляции электрона и позитрона их масса покоя исчезает (фотоны не имеют массы покоя) и полностью переходят в энергию фотонов. Эта энергия эквивалентна сумме масс покоя аннигилирующих частиц и энергии их движения. Процесс аннигиляции заряженных частиц происходит в полном соответствии с законом сохранения электрического заряда. Например, при аннигиляции электрона и позитрона их заряды исчезают не по отдельности, а вместе. Сумма их зарядов (положительного и отрицательного) в точности равна нулю, равны нулю и заряды рождающихся фотонов. Суммарный заряд остается неизменным — как до аннигиляции заряженных частиц, так и после нее. Сейчас ученым известны не только элементарные античастицы, но и антиатомы, например, атомы антиводорода. Обнаружить эти реалии в природе не удалось — их синтезируют в лаборатории. Ядром атомов антиводорода служит отрицательно заряженный антипротон. Роль электрона в таком атоме играет позитрон.

Двуличность элементарных Частиц

Квантовая механика, созданная для познания свойств микромира, оказалась бессильной ответить на самые насущные вопросы: почему существуют именно такие микрочастицы, какие мы наблюдаем, почему они обладают именно такими, известными нам из опыта, значениями массы и заряда? Теория была вынуждена принять частицы и их характеристики как факт. Затем уже она могла «строить» из них атомы и молекулы, вычислять их свойства, например, закономерности спектров, силы, удерживающие электроны на орбитах и объединяющие атомы в молекулы, и многое другое. В этом смысле квантовой механике присущи черты феноменологической теории, в уравнения которой входят постоянные, определяемые непосредственно из опыта.

При попытке вычислить энергию электрона квантовая механика приводила к бесконечно большим величинам. Однако бесконечно большая энергия, как показывает теория относительности, соответствует бесконечно большой массе, что никак не совместимо с опытом, дающим вполне определенное значение массы электрона. Такие бесконечности возникали в квантовой механике во многих случаях. Чаще всего, как в задаче о собственной энергии электрона, они появлялись вследствие того, что частицы, в том числе и электроны, выступают в квантовых теориях как точечные образования, не имеющие размеров, а при расчетах одновременно применялись методы новой, квантовой физики и старой — классической.

Для того чтобы избежать противоречащих опыту бесконечных величин, требовалось радикальное изменение теории. Мобилизуя все возможные способы, используя все лазейки, которые можно было отыскать в старых теориях, и отваживаясь на попытки, не имеющие прецедентов в прежней практике, ученые ухитрялись проникать все глубже и глубже в твердь микромира, а точнее — в его «зыбкость». Первого успеха добилась квантовая электродинамика — теория, объединившая то, что казалось непримиримым: свойства электромагнитного поля с квантовой структурой вещества и энергии. Можно сказать, что это примирение основано на компромиссе. Одной из опор служит ощущение гармонии, симметрии между частицами и полями, осознание того, что изменение одного влечет за собой определенное изменение другого. Осознание их кровной связи, их единой природы. Симметрия частиц и поля и стала путеводной, нитью в поисках единой судьбы мира.

Подобная идея привела японского физика Юкаву к созданию теории ядерных сил — поразительной основополагающей теории, роль которой можно уподобить роли одного из китов, на которых держится мир. Юкава предположил, что протоны и нейтроны внутри ядра удерживаются полем, порождающим чрезвычайно большие силы, если расстояния между частицами меньше диаметра ядра. Причем эти силы очень быстро убывают при увеличении расстояния за пределы ядра. Для того чтобы поле обладало этими свойствами, нужно, чтобы его кванты были очень отличны от квантов электромагнитного поля — фотонов. Фотоны движутся со скоростью света и не могут двигаться с другой скоростью. Их масса покоя равна нулю. Поэтому электромагнитное поле действует на очень больших расстояниях, конечно, с увеличением расстояния его действие постепенно ослабевает. Расчеты показали Юкаве, что именно обеспечивает известные свойства ядерных сил, обладающих большой величиной в пределах ядра и быстро убывающих за его пределами: квантами этого поля должны быть особые частицы с массой, примерно в 300 раз превышающей массу электрона. Когда Юкава предсказал эти частицы, ни один опыт не намекал на их реальное существование. Но эти частицы, названные мезонами (промежуточными, так как величина их массы расположена между массами электрона и протона), впоследствии были обнаружены на опыте. Обладая массой покоя, они, конечно, не могут двигаться со скоростью света. Это и обеспечивает чрезвычайную малость зоны действия ядерных сил. Позже эти частицы получили наименование пи-мезонов, ибо были открыты и другие частицы, входящие в семейство мезонов.

Поделиться:
Популярные книги

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Хочу тебя любить

Тодорова Елена
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Хочу тебя любить

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Слово дракона, или Поймать невесту

Гаврилова Анна Сергеевна
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Слово дракона, или Поймать невесту

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман