Пределы роста. 30 лет спустя
Шрифт:
Представьте себе, что вы ведете машину и светофор впереди переключается на красный. В обычных условиях вы можете плавно затормозить и остановиться перед светофором, поскольку вовремя получили точный визуальный сигнал — красный свет; поскольку ваш мозг быстро на это отреагировал, приказав ноге нажать на тормоз; и поскольку машина немедленно отзывается на это нажатие, а вы из своего опыта знаете, насколько быстро она сможет остановиться, и регулируете нажатие на педаль тормоза.
Если же часть ветрового стекла со стороны водителя запотела, и вы вынуждены спрашивать своего пассажира о том, какой горит свет, то задержка с получением ответа (даже короткая) может привести к тому, что вы проскочите на красный — или же вы заранее должны сбросить скорость, компенсируя этим возможную задержку. Если же пассажир сказал неправду,
Если сигналы обратной связи запаздывают или искажаются, если им не верят или отрицают их существование, если в ответных действиях системы есть ошибка или система в состоянии ответить только после большого запаздывания, то она не сможет войти в допустимые пределы и прийти к равновесному состоянию. Если имеет место хотя бы одно из перечисленных условий, то система отреагирует слишком поздно и выйдет за пределы (рис. 4.9, с и d).
Мы уже описали некоторые виды задержек, связанных с поступлением информации и принятием ответных действий в World3. Один из примеров — запаздывание между моментом, когда загрязнитель попадает в биосферу, и моментом, когда становится заметен наносимый им вред здоровью человека или производству продовольствия. Так, между моментом выброса в приземный слой атмосферы молекулы хлорфторуглеводорода и моментом, когда она начнет разрушать стратосферный озоновый слой, проходит 10–15 лет. Также важны и политические задержки. Часто между обнаружением проблемы, ее признанием и принятием общих мер проходят годы. Такие запаздывания мы рассматриваем в следующей главе.
Рис. 4.9. Структурные причины четырех возможных типов поведения в модели World3
Еще одна иллюстрация к важности запаздываний — история с утечкой в окружающую среду полихлорбифенилов (ПХБ). С 1929 г. промышленность произвела около 2 млн т маслянистой, устойчивой, негорючей жидкости — ПХБ[142]. Их использовали в основном для рассеивания тепла в электрических конденсаторах и трансформаторах, но также и в качестве рабочей жидкости в гидравлических системах, в качестве смазочного материала, огнезащитного вещества и компонента пестицидов, красок, лаков, чернил и копировальной бумаги без пачкающего слоя. За 40 лет использования ПХБ попали на свалки, в зоны вдоль дорог, в канализацию, грунтовые воды и поверхностные водоемы, ведь тогда о возможных последствиях для окружающей среды никто не думал. В 1966 г., когда проводилось знаменитое исследование содержания ДДТ в окружающей среде, датский исследователь Сорен Дженсен (Soren Jensen) сообщил, что, кроме ДДТ, повсеместно были обнаружены и другие токсичные вещества — ПХБ[143]. Затем другие исследователи подтвердили, что ПХБ обнаруживаются практически в любой экосистеме земного шара.
ПХБ можно встретить практически в любом элементе глобальной экосистемы. В атмосферу ПХБ попадают в основном из гидросферы… Отложения ПХБ были обнаружены в реках, озерах, океанических зонах… Детальное исследование экосистемы Великих озер показало, что ПХБ накапливаются в тканях живых организмов и передаются по пищевым цепям.
Природа Канады (Environment Canada), 1991
ДДТ и ПХБ — единственные хлорорганические соединения, систематически обнаруживаемые в тканях арктических морских млекопитающих… Содержание ПХБ в грудном молоке эскимосских женщин — одно из самых высоких зарегистрированных значений… Потребление большого количества рыбы и мяса морских животных, вероятно, основная причина накопления ПХБ в тканях человека… Эти результаты показывают, что такие токсичные соединения, как ПХБ, могут существенно влиять на снижение иммунитета и распространение инфекционных заболеваний среди эскимосских детей.
Е. Девайли (Е. Dewailly), 1989
[В
П. Дж. Х.Реинцерс (Р.J. Н. Reijnders), 1986
Растворимость большинства ПХБ в воде низка, но в жирах эти соединения растворяются хорошо, вследствие чего время их жизни в окружающей среде очень велико. Они быстро перемещаются в атмосфере, медленно — в почвенной среде и донных отложениях ручьев, рек и озер, пока не попадут внутрь какого-нибудь живого организма. Там они накапливаются в его тканях, и по мере перемещения по пищевым цепям концентрация только увеличивается. ПХБ обнаруживаются в наибольших концентрациях в тканях хищных рыб, морских птиц и млекопитающих, в жировых тканях человека и в женском грудном молоке.
Информация о влиянии ПХБ на здоровье человека и других животных поступает очень медленно. Выяснить их воздействие достаточно сложно, поскольку под общим названием ПХБ скрывается 209 соединений, относящихся к одному семейству, но эффекты они могут давать разные. Тем не менее, уже установлено, что некоторые ПХБ нарушают обмен веществ. Они имитируют действие одних гормонов, например, эстрогена, и блокируют действие других, например, гормонов щитовидной железы. В результате сигналы, управляющие обменом веществ, искажаются и поведение системы меняется. От этого страдают все живые организмы, обладающие эндокринной системой — птицы, киты, полярные медведи, люди. Даже в маленьких концентрациях соединения, нарушающие обмен веществ, способны вызвать в организме настоящий хаос, и это особенно опасно для развития эмбрионов. Зарождающаяся жизнь может вообще погибнуть, или растущему организму будет нанесен вред — могут быть затронуты нервная система, интеллект, половые функции[144].
Поскольку ПХБ перемещаются медленно, являются стойкими соединениями и накапливаются в верхних звеньях пищевых цепей, их называют «биологической бомбой замедленного действия». Хотя с семидесятых годов производство и использование ПХБ запрещено во многих странах[145], тем не менее, в мире остается много этих соединений. Из общего количества когда-либо произведенных ПХБ большая часть все еще используется или хранится на заброшенных электроподстанциях. В странах со строгим природоохранным законодательством большие количества старых бифенилов помещают в захоронения или утилизируют с помощью сжигания в особых условиях, при которых разрушается молекулярная структура соединения и оно перестает быть опасным. В 1989 г. была проведена оценка, которая показала, что примерно 30 % суммарного количества произведенных бифенилов уже попало в окружающую среду. Только 1 % достиг океанской среды. Остальные 29 % распределились по почве, рекам, озерам, откуда они смогут перемещаться в ткани живых организмов спустя десятилетия[146].
На рис. 4.10 приведен еще один пример запаздывания при загрязнении окружающей среды — медленное проникновение химикатов в грунтовые воды через почву. В период с 1960 по 1990 гг., когда использование 1,2- дихлорпропена было окончательно запрещено, это дезинфицирующее вещество для обработки почвы широко применялось в Нидерландах
Рис. 4.10. Медленное проникновение 1,2-дихлорпропена в грунтовые воды
Дезинфицирующий химикат для обработки почв дихлорпропеном широко применялся в Нидерландах в семидесятые годы, пока его использование не было ограничено, а затем окончательно запрещено в 1990 г. В результате концентрация дихлорпропена в верхних слоях почвы сельскохозяйственных угодий резко уменьшилась. Расчеты, проведенные в 1991 г., показывают, что концентрация этого соединения в грунтовых водах достигнет максимума не раньше 2020 г. и что в воде даже во второй половине XXI в. будут присутствовать существенные количества этого химиката. (Источник: N.L. van der Noot.)