Чтение онлайн

на главную

Жанры

Превращения гиперболоида инженера Гарина
Шрифт:

Первые оптические квантовые генераторы, работавшие на кристаллах рубина, на стекле, на некоторых других кристаллах излучали электромагнитную энергию короткими мощными импульсами. Они не могли работать непрерывно. Главным образом из-за несовершенства применявшихся материалов.

Рубин и другие кристаллы, а также стекла в оптическом квантовом генераторе приводятся в активное состояние при помощи оптической накачки. Здесь работает ставшая классической схема трех уровней, предложенная для получения активного состояния еще Басовым и Прохоровым. Энергетические уровни рубина, участвующие в генерации, принадлежат ионам хрома. Правда, в рубине верхний из рабочих уровней хрома имеет сложную структуру. Это даже не уровень, а сочетание множества уровней, слившихся

в две отдельные полосы. Для того чтобы перебросить электроны хрома из основного состояния в нижнюю из этих полос, на них нужно воздействовать фотонами зеленого света. Для того чтобы перебросить электроны в верхнюю полосу, рубин нужно осветить сине-фиолетовым светом. Лампы-вспышки, служащие для накачки оптических квантовых генераторов, излучают белый свет. Это значит, что в их спектре присутствуют все частоты видимого света. Поэтому во время вспышки внешние электроны части ионов хрома поглощают зеленый свет и переходят в нижнюю из полос возбуждения, а электроны остальных ионов хрома, поглощая синий и фиолетовый свет, поднимаются в верхнюю из этих полос.

Приобретя таким путем избыточную энергию, ионы хрома в кристалле рубина не могут сохранить ее дольше, чем несколько стомиллионных долей секунды. За это время часть поглощенной энергии рассеется по решетке кристалла, вследствие чего электроны опустятся на более низкий энергетический уровень, обладающий всеми свойствами, необходимыми для того, чтобы стать стартовым уровнем для генерации света. На этом уровне связь между электроном и решеткой кристалла оказывается много меньшей, и он может прожить на нем десятитысячную и даже тысячную долю секунды. Поэтому значительная часть электронов, поглотивших свою долю энергии света лампы-вспышки, практически мгновенно оказывается на этом стартовом энергетическом уровне. Некоторые из них, прежде чем успеют отдать остатки своей избыточной энергии решетке кристалла, самопроизвольно высвечивают ее, испуская фотон. Такое испускание фотона называется люминесценцией и происходит в каждом ионе независимо от других. Моменты самопроизвольного испускания фотона и его направление подчиняются только законам случая.

Самопроизвольная люминесценция была известна давно. В обычных условиях она сопровождается и вынужденной люминесценцией. Но если в веществе не достигнута инверсия населенностей энергетических уровней, то есть ионов-приемников, как всегда, больше, чем ионов-передатчиков, вынужденная люминесценция маскируется более сильным резонансным поглощением.

Для того чтобы достичь в рубине инверсии, то есть состояния, в котором ионов-передатчиков больше, чем приемников, требуются лампы-вспышки, дающие очень большую световую энергию. Если же инверсия достигнута, то достаточно обеспечить нужную обратную связь и вынужденная люминесценция, вызовет генерацию света.

Процесс начнется в тот момент, когда один из фотонов, появившихся в результате самопроизвольной люминесценции, вылетит вдоль оси кристалла по направлению к одному из зеркал. Если длина кристалла достаточно велика, этот фотон имеет шанс вызвать излучение точно такого же фотона, летящего в том же направлении. Отразившись от зеркала, оба фотона вызовут излучение новых, и так при каждом прохождении кристалла. Интенсивность вынужденного излучения будет увеличиваться, пока, как во всякой квантовой системе, не наступит насыщение, при котором число электронов на стартовых и на нижних энергетических уровнях всей совокупности ионов хрома не сравняется.

Конечно, первый фотон может поглотиться в самом кристалле или в зеркале, прежде чем он вызовет начало лавины. Это дело случая. Но как говорится — не один, так другой! В действительности, конечно, речь идет не об одиночном фотоне, а о целой массе их. Нужно только, чтобы игра законов случая привела к возникновению фотонной лавины. Важно, чтобы поступление энергии от активной среды превосходило все имеющиеся в системе потери энергии.

В работе оптического квантового генератора одновременно участвуют миллиарды фотонов. При этом отчетливо выступает волновая сторона природы света. Световые волны, бегающие туда и обратно между зеркалами резонатора, образуют стоячую волну, длина которой автоматически подбирается так, чтобы на расстоянии между зеркалами укладывалось целое число длин волн или же целое число и еще одна половина. Здесь все происходит почти так же, как в обычной струне, закрепленной на обоих концах. Концы струны должны оставаться неподвижными. Поэтому, проводя по ней смычком или возбуждая ее ударом молоточка или просто щипком, мы можем возбудить только такие колебания, которым не мешают закрепленные концы.

По мере развития процесса генерации интенсивность световой волны быстро возрастает. Соответственно возрастает и вероятность вынужденного испускания, в то время как вероятность самопроизвольной люминесценции остается неизменной. Очень быстро вынужденное испускание приобретает решающую роль, и большая часть энергии, запасенной в кристалле, преобразуется в яркий узкий луч света.

Оптический квантовый генератор Меймана работал импульсами. Собственно, только на это и можно было рассчитывать. Ведь кристалл возбуждался импульсным светом лампы-вспышки. Поэтому он приходил в активное состояние только на время вспышки. Мейман не имел в своем распоряжении источника света, который мог бы непрерывно давать энергию, необходимую для возбуждения рубина. Впрочем, если бы он и имел такой источник, генератор вряд ли мог работать непрерывно. Подсчеты показывали, что не менее 97 процентов световой энергии лампы бесполезно растрачивались на нагрев рубина. При непрерывном освещении температура рубина должна была быстро возрасти настолько, что генерация стала бы невозможной.

После естественного торжества, последовавшего за первыми импульсами генерации, ученые, подобно внимательным врачам, начали исследовать новорожденного. И он сразу преподнес им сюрприз.

Оказалось, что каждый импульс излучения рубинового генератора не похож ни на один из последующих импульсов. Более того. Его, строго говоря, нельзя называть импульсом. То, что глаз воспринимал как вспышку излучения, на экране осциллографа представилось в виде последовательности отдельных очень коротких пичков, хаотически следующих один за другим. Каждый пичок излучения длился всего миллионную долю секунды, затем генератор угасал или по крайней мере уменьшал свою яркость, чтобы через краткий миг вновь на миллионную долю секунды засиять с необыкновенной яркостью.

Загадка пичкового режима твердотельных лазеров вот уже пять лет тревожит умы физиков. В основных чертах этого явления они уже разобрались. Но многие детали не ясны до сих пор. Пичковый режим может возникнуть из-за того, что активность кристалла не одинакова по его длине или сечению. Но даже в идеальном кристалле такой режим возможен из-за того, что длина генерируемых световых волн в невообразимое число раз меньше, чем размеры кристалла. Поэтому в кристалле возможны многочисленные резонансы на близких частотах и генерация может хаотически перескакивать с одной частоты на другую.

Короткое сообщение Меймана всколыхнуло ученых и инженеров — сразу возникло множество вопросов. Какие практические применения получит новый прибор? Можно ли существенно увеличивать даваемую им энергию? Удастся ли заставить его работать непрерывно? Как отыскать другие вещества, способные приходить в активное состояние, позволяющее генерировать свет?

Мало кто из читавших заметку Меймана знал, что на пороге рождения находится еще один оптический генератор, ничуть не похожий на меймановский.

«КУШАЙТЕ ЛУЧШЕ МОРОЖЕНОЕ!»

В августе 1957 года Соединенные Штаты посетила первая делегация советских радиоспециалистов. Они ехали на XII Генеральную ассамблею Международного научного радиосоюза. Айсберги «холодной войны» таяли медленно, как те айсберги, которые в бескрайних просторах северной части Атлантического океана караулили, не рухнет ли в воду четырехмоторный самолет, несущий в своем чреве пятнадцать советских ученых. Реактивные самолеты в тот год еще не возили пассажиров через океан.

Поделиться:
Популярные книги

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Дядя самых честных правил 7

Горбов Александр Михайлович
7. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 7

С Д. Том 16

Клеванский Кирилл Сергеевич
16. Сердце дракона
Фантастика:
боевая фантастика
6.94
рейтинг книги
С Д. Том 16

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота