Чтение онлайн

на главную

Жанры

Превращения гиперболоида инженера Гарина
Шрифт:

Теперь ни для кого не секрет, что никакая точка не может быть беспредельно малой. В оптике точка — это светящееся пятнышко, размер которого никак не меньше длины световой волны. Параллельный пучок в оптике совсем не похож на тот, о котором написано в учебнике геометрии. От параллельного пучка лучей света, по его краям, всегда постепенно отделяется небольшая часть, уходящая в стороны. Но это, как говорят, детали. Во многих случаях они не играют существенной роли.

Инженеры-светотехники встречаются с гораздо более существенными трудностями. Они не могут увеличить яркость прожектора просто потому, что яркость современных ламп достигла предела. Большего не допускают существующие материалы. Наращивать световой поток дальше можно, только увеличивая размеры лампы. Вот здесь и обнаруживается тупик. Прожектор может превратить в параллельный

пучок только свет, идущий из точки. Свет, выходящий из соседней точки, формируется в отдельный (тоже параллельный) пучок, но идущий в другом направлении. Яркость света, излучаемого в первоначальном пучке, при этом не возрастает. Мы можем увеличить размеры площади, освещенной прожектором, но не ее яркость.

Яркость луча любого прожектора быстро уменьшается с увеличением расстояния. Ведь каждый прожектор излучает расходящийся пучок лучей из-за того, что источник света в нем не точечный. Оптический квантовый генератор с самого начала испускает почти не расходящийся пучок света, причем лучи его тем более параллельны, чем больше сечение пучка. Конечно, этот пучок постепенно расширяется из-за дифракции, то есть из-за огибания светом края выходного отверстия. Но это сравнительно небольшая часть, и ученые знают, как ее уменьшить. Поэтому яркость луча оптического квантового генератора очень медленно уменьшается даже на больших расстояниях.

Вот один из примеров невозможного. Никакая оптическая система не может сделать изображение обычного источника света более ярким, чем сам источник. Солнечный зайчик, отброшенный большим вогнутым зеркалом, режет сталь и плавит гранит. Как ни велика температура этого зайчика, она ниже температуры поверхности Солнца.

Если же на зеркало или линзу падает практически параллельный пучок лучей оптического квантового генератора, то вся энергия, заключенная в этом пучке, соберется в фокусе, на площадке размером порядка длины световой волны. Яркость этой площадки будет огромна. Температура в ней быстро поднимется. Легко предвидеть, что при этом произойдет!

Еще пять лет назад об этом и не мечтали. Сфокусированный луч оптического квантового генератора пробивает дырки в стальных пластинках, испаряет алмаз, а если в фокусе нет ничего, кроме воздуха, превращает его в миниатюрную шаровую молнию. Может быть, самое поразительное здесь то, что источник, испускающий этот шквал энергии, сам совсем холодный. Иногда он имеет температуру жидкого азота.

Лазерная оптика обогнала обычную с помощью радио. Обратная связь сыграла решающую роль. Только в результате дружного действия биллионов атомов их совокупное излучение приобретает почти идеальную регулярность в пространстве и времени.

Существенной особенностью лазеров является то, что все они основаны на использовании многообразных вариантов одного давно известного оптикам явления. На использовании разновидностей особого рода свечения — люминесценции. Если вы любите короткие формулировки, то можно сказать, что лазеры родились из союза люминесценции и обратной связи.

С люминесценцией навсегда связано имя академика Сергея Ивановича Вавилова.

В начале тридцатых годов в особняке на Миусах несколько человек каждый день спускались в абсолютно темный подвал и часами сидели там без всякого дела. Подобно тому, как Шерлок Холмс, желая сосредоточиться, играл на скрипке, некоторые из них пели. Это были академик С. И. Вавилов и его ученики. Они увлеченно трудились над разгадкой самосвечения веществ. Оно зачастую было столь слабым, что приходилось задолго до опыта готовить себя к нему, сидя в темноте и ничего не делая. Так часами сидел П. А. Черенков, нобелевский лауреат, которому посчастливилось открыть известный эффект Черенкова. Так работал и профессор Н. А. Добротин, ставший нобелевским лауреатом и заместителем директора ФИАНа. Так сидел часами и сам Вавилов, и сотрудники этим охотно пользовались, чтобы в тишине обсудить текущие дела и проблемы. Многие из его учеников стали видными учеными и работают не только в Москве, но и в других городах. Один из них, П. П. Феофилов, ленинградец, стал крупнейшим специалистом в области люминесценции. Он вслед за своим учителем исследовал природу свечения, лежащего в основе тех процессов, которые заставляют сиять в темноте циферблаты часов и приборов, гнилушки и светлячки в лесу и брызги морской воды в августовские ночи, а в наших домах образуют изображение на экранах телевизоров.

Феофилов, теперь уже вместе

со своими учениками и сотрудниками, особенно подробно исследовал законы люминесценции ионов редких земель в различных кристаллах и стеклах.

Редкими землями, или редкоземельными элементами, называют группу металлов, некоторые из которых действительно крайне редки, а другие встречаются в больших количествах и широко применяются в технике, в частности в металлургии, стекольной промышленности, при изготовлении кремней для зажигалок, и трассирующих пуль, и снарядов. Впрочем, слово «земли» в их названии имеет только исторический смысл и пришло в науку из глубокой древности. Древнегреческие философы, средневековые алхимики и химики доменделеевского периода применяли это слово в различных, часто противоположных смыслах.

Уже Лавуазье предположил, что неразложимые, неплавкие, негорючие и нелетучие вещества, называвшиеся «землями», являются окислами и химикам еще предстоит их разложить. Через двадцать — двадцать пять лет все эти «земли» и ряд вновь открытых были действительно разложены на кислород и металлы. Но химики продолжали по привычке называть эти окислы землями.

Менделеев, создав свою периодическую систему, дал полную классификацию окислов и тем самым сделал термин «земли» излишним. Но традиции языка оказались сильнее здравого смысла. Более того, применительно к группе редких земель этот термин со временем присоединился не только к окислам, но и к самим металлам, имеющим очень близкие химические свойства.

Группа редкоземельных металлов в свое время доставила много хлопот Менделееву. Все они в отношении химических свойств аналогичны самому легкому из них — лантану. Они как бы выпадали из периодического закона, в соответствии с которым химические свойства должны изменяться от элемента к элементу, повторяясь через каждые 8 или 18 номеров.

Большую помощь Менделееву оказали исследования чешского химика Б. Браунера, который заинтересовался открытием Менделеева еще в семидесятых годах прошлого века. В результате длительных исследований редких земель Браунер решил, что все они как исключение должны быть выделены в особую группу. Менделеев принял это предложение. Он даже попросил Браунера, давно ставшего не только его заочным сотрудником, но и другом, написать раздел «Элементы редких земель» для седьмого издания своего знаменитого труда «Основы химии».

Квантовая физика подтвердила справедливость идей Браунера. Особенности редких земель связаны с тем, что по мере усложнения атомного ядра, после того как число протонов в нем становится равным 57, его заряд компенсируется не обычным прибавлением электронов на все более удаленные орбиты, а заполнением внутренних орбит, оставшихся не использованными в более легких атомах. При этом внешние орбиты всех 15 редких земель одинаковы, а именно они определяют химические свойства атомов.

Но Феофилова и его сотрудников интересовали не внешние электроны редких земель, а как раз те не заполненные электронами орбиты, которые отличали один редкоземельный элемент от другого. Постепенное заполнение этих орбит вызывало сложные изменения в спектрах. Расшифровка таких изменений представляла чрезвычайно увлекательную и сложную задачу. В ходе ее решения оказалось, что исследование спектров редкоземельных элементов позволяет получить ценные сведения о строении тех кристаллов, в которые редкие земли входят как очень малая примесь. Это было очень важно и для физики атома, и для теории строения кристаллов, и даже для решения сложных технологических задач, возникающих при варке лучших сортов стекла.

ПИЧКИ-ЗАГАДКИ

Во многих городах в различных странах ученые включились в эти исследования. Еще больше было таких, которые применяли их результаты для своих весьма разнообразных целей.

В области квантовой электроники редкоземельные элементы позволили создать множество различных типов оптических квантовых генераторов. Наиболее широкое применение среди всех редких земель здесь нашел неодим.

Добавка нескольких процентов неодима в стекло позволила получить генерацию инфракрасного излучения с длиной волны около одного микрона. Человеческий глаз не видит этого излучения, но тем поразительнее его действие. Здесь нет даже огненного луча, вылетающего из рубина, но в пластинке, изготовленной из сверхтвердого сплава, появляется одно отверстие за другим. Невидимый инфракрасный луч пробивает тончайшие аккуратные отверстия с гладкими оплавленными краями.

Поделиться:
Популярные книги

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Ст. сержант. Назад в СССР. Книга 5

Гаусс Максим
5. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ст. сержант. Назад в СССР. Книга 5

Империя на краю

Тамбовский Сергей
1. Империя у края
Фантастика:
альтернативная история
5.00
рейтинг книги
Империя на краю

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Кровавые обещания

Мид Райчел
4. Академия вампиров
Фантастика:
ужасы и мистика
9.47
рейтинг книги
Кровавые обещания

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия