Превращения гиперболоида инженера Гарина
Шрифт:
Например, при помощи парамагнитного усилителя с бегущей волной, созданного Штейншлейгером и сотрудниками, пулковские радиоастрономы открыли радиоизлучение ионизированного космического водорода на волне 5 сантиметров.
Ионизированный водород в больших количествах имеется вблизи горячих звезд и в туманностях. Изучая его излучение, можно получить ценные сведения не только о его распределении и движении в пространстве, но и о свойствах ионизирующих его светил. Оптическая астрономия не способна наблюдать водород в таком состоянии. Поэтому открытие его радиоизлучения явилось ценным вкладом в науку.
Исследование нейтрального межзвездного
Еще один парамагнитный усилитель бегущей волны Штейншлейгера и сотрудников, работающий на волне 8 сантиметров, позволил провести ценные исследования строения известной Крабовидной туманности. Эти исследования проводились во время затмения туманности Луной, что дало возможность оценить излучение, исходящее от отдельных частей туманности.
Пожалуй, самые интересные результаты, полученные при помощи квантовых парамагнитных усилителей, относятся к радиолокации планет — этой активной ветви радиоастрономии. Кстати, о возможности радиолокации Луны первыми еще во время Отечественной войны писали Мандельштам и Папалекси.
В Советском Союзе работы по радиолокации планет ведутся под руководством академика В. А. Котельникова. При этом успешно используются резонаторные парамагнитные усилители Жаботинского и Францессона, работающие на волне около 40 сантиметров. Вот вкратце как развивались эти работы.
В 1957 году, когда первый советский спутник открыл нам путь в космос, мечты К. Э. Циолковского о полетах к другим планетам превратились в задачу близкого будущего. Однако оказалось, что, даже создав достаточно мощные ракеты, невозможно направить их к цели с нужной точностью.
Это может показаться странным. Ведь высокая точность астрономических расчетов общеизвестна. Но астрономы вычисляют положения планет при помощи своей астрономической единицы длины — среднего расстояния от Земли до Солнца. А выразить эту единицу в земных метрах с нужной точностью никто не умел. Лучшие измерения астрономов содержали ошибку в тысячи километров. А это уже верный промах. Казалось бы, можно послать радиосигналы на Луну — самое близкое небесное тело, чтобы, точно определив расстояние до нее, рассчитать небесный треугольник, в вершинах которого находятся Солнце, Земля и Луна. Задача казалась проще простой — по катету определить гипотенузу, прямо-таки седьмой класс. Но нужно было еще измерить угол между Луной и Солнцем, а сделать это точно пока невозможно. Пришлось обратиться к планетам. Правда, здесь возникло новое осложнение — планеты слишком далеки. Их трудно достать радиолокатором. И физики выбрали Венеру. Она ближе других подходит к Земле. Но это все же десятки миллионов километров. Можно ли получить радиоэхо от Венеры?
Ответ, на этот вопрос дали ученые Института радиотехники и электроники АН СССР. Да, можно.
Большие коллективы включились в подготовку к этим исследованиям. Нужно было провести сложные расчеты, создать мощный передатчик, огромную антенну.
Наблюдения начались 18 апреля 1961 года, когда расстояние до Венеры было минимальным для этого года и участники работы еще были под свежим впечатлением триумфального полета Юрия Гагарина. Радиоволны путешествовали в пространстве пять минут. Легко представить себе напряжение этих минут! Все было предусмотрено и многократно проверено. Сигнал ушел. Найдет ли он Венеру? Вернется ли? Будет ли принят?
Но ждать надо было не пять минут, а гораздо дольше. Нужно было ждать, пассивно наблюдая за автоматической работой планетного локатора. Ведь отраженный сигнал слаб настолько, что его невозможно увидеть на фоне шумов приемника. Только после долгой и сложной обработки результатов можно выяснить, приходит ли вожделенное эхо.
Наконец обработка принятых сигналов закончена. Победа! Аппаратура сработала безупречно. Астрономическая единица длины определена, пока не очень точно, но ошибка составляет теперь всего лишь около тысячной доли процента.
Лишь! Эта доля все же две тысячи километров! Разве можно на этом остановиться?
Летом 1962 года коллектив, руководимый В. А. Котельниковым, сделал следующий шаг. Венера к этому времени, увы, удалилась. Тогда решено было лоцировать Меркурий. Но это гораздо труднее. Во-первых, в это время Меркурий был в два раза дальше от Земли, чем Венера во время опытов 1961 года, Во-вторых, Меркурий — самая маленькая планета солнечной системы. Его поверхность в шесть-семь раз меньше, чем поверхность Венеры. Значит, должно уменьшиться и радиоэхо.
Но ученые были готовы и к этому. Они значительно повысили чувствительность приемника, работающего в радиолокаторе, снабдив его парамагнитным усилителем радиоволн.
Итак, жидкий гелий залит. Рубин охладился почти до абсолютного нуля. Все блоки космического локатора проверены. Опыт начался. Но с увеличением расстояния возросло и время путешествия радиоволн. Их возвращения нужно было ждать 10 минут. Правда, магический кристалл сделал ответный сигнал более ясным и для получения результата требовалось гораздо меньшее время, чем в первых опытах.
Когда закончилась обработка принятых сигналов, стало ясно, что радиоволны отражаются от Меркурия примерно так же, как от Луны. И можно было впервые проверить наши предположения о свойствах поверхности Меркурия. Эта работа принесла советским ученым не только научные достижения, но и мировой рекорд дальности радиолокации.
Осенью того же года, когда Венера опять приблизилась к Земле, на нее снова направили луч космического радиолокатора. Именно тогда на Венеру и обратно простой азбукой Морзе были переданы понятные во всем мире слова: «Ленин, СССР, Мир». Благодаря усилителю сигналы появились просто на осциллографе. Но это был не единственный результат. Точность астрономической единицы длины увеличилась более чем в пять раз. Впервые удалось оценить отражение радиоволн от поверхности Венеры.
А за Венерой начался штурм Марса. Он приблизился к Земле настолько, что оказался в зоне досягаемости планетного локатора и был взят на прицел. Радиоэхо показало, что поверхность Марса, представляющаяся глазу ровной пустыней, в действительности обладает сложным рельефом, более гладким в одних частях и изрезанным в других. Кстати, эти результаты недавно подтвердили фотографии, полученные американскими учеными при помощи космической лаборатории «Маринер-IV».
Ну, а Юпитер? Гигантские размеры этой планеты отчасти компенсировали увеличение расстояния. Радиосигналы, направленные на него, путешествовали около часа. Они принесли сведения об отражательных свойствах этой планеты и новый рекорд дальности радиолокации.