Приглашение в теорию чисел
Шрифт:
Рассмотрим еще ряд свойств простейших троек. Мы только что получили, что числа х и у не могут быть оба четными, но мы можем также показать, что они не могут быть и оба нечетными. Действительно, предположим, что
x = 2a +1, y = 2b + 1.
После возведения в квадрат этих чисел и сложения их, получим число
x2 + y2 = (2a + 1)2 + (2b + 1)2 = 2 + 4а + 4a2 + 4b + 4b2 = 2 + 4 (а + а2 + b + b2),
делящееся
Так как одно из чисел х и у — четное, а другое — нечетное, то z — также нечетное. Для определенности будем считать, что в наших обозначениях число х — четное, а у — нечетное.
§ 2. Решение задачи Пифагора
Чтобы найти простейшие решения уравнения Пифагора (5.1.1), перепишем его в виде
x2 = z2 — y2 = (z + y)(z — y). (5.2.1)
Вспоминая, что х — четное, а у и z — оба нечетные, получаем, что все три числа
х, z + y, z — y
четные. Тогда мы можем разделить обе части уравнения (5.2.1) на 4 и получить
(1/2 x)2 = 1/2 (z + y) 1/2 (z — y). (5.2.2)
Обозначим
m1 = 1/2 (z + y), n1 = 1/2 (z — y); (5.2.3)
тогда уравнение (5.2.2) перепишется как
(1/2 x)2 = m1n1. (5.2.4)
Числа m1 и n1 взаимно простые. Чтобы это увидеть, предположим, что
d = D(m1, n1)
есть наибольший общий делитель чисел m1 и n1. Тогда, как это следует из § 1 гл. 4, число d должно делить оба числа
m1 + n1 = z, m1 — n1 = y.
Но
d = D(m1, n1) = 1. (5.2.5)
Так как произведение (5.2.4) этих двух взаимно простых чисел является квадратом, то можно использовать результат, изложенный в конце § 2 гл. 4 (стр. 50), согласно которому числа m1 и n1 являются квадратами
m1 = m2, n1 =, D(m, n) = 1. (5.2.6)
Здесь мы можем без нарушения общности считать, что m > 0, n > 0. Теперь подставим m2 и n2 вместо m1 и n1 соответственно в уравнения (5.2.3) и (5.2.4);
получим
m2 = 1/2 z + 1/2 y, n2 = 1/2 z — 1/2 y, m2n2 = 1/4 x2,
т. е.
x = 2mn, y = m2 — n2, z = m2 + n2. (5.2.7)
Проверка показывает, что эти три числа всегда удовлетворяют соотношению Пифагора х2 + у2 = z2.
Осталось определить, какие целые положительные числа m и n в действительности соответствуют простейшим треугольникам. Докажем, что следующие три условия на числа m и n являются необходимыми и достаточными:
(1) (m, n) = 1,
(2) m > n, (5.2.8)
(3) одно из чисел m и n четное, а другое — нечетное.
Доказательство. Сначала покажем, что если числа х, у, z образуют простейшую тройку, то условия (5.2.8) выполняются. Мы уже показали, что условие (1) является следствием того, что числа х, у, z взаимно простые. Условие (2) следует из того, что числа х, у, z — положительны. Чтобы увидеть, что условие (3) необходимо, заметим, что если m и n оба нечетные, то в соответствии с (5.2.7) у и z были бы оба четные, в противоречие с результатами, полученными в конце предыдущего параграфа.