Чтение онлайн

на главную - закладки

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

Делители или аликвотные части [6] чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

6 = 1 + 2 + 3.

За ним следует число 28:

6

Аликвотные дроби — дроби вида 1/n; в древности было принято всякую дробь

представлять в виде суммы аликвотных дробей. Например, 5/12 = 1/12 + 1/3. (Прим. перев.)

28 = 1 + 2 + 4 + 7 + 14,

далее число 496:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(22 — 1),

28 = 22 7 = 22(23 — 1),

496 = 24 31 = 24(25 — 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2p– 1(2p — 1) = 2р q, (3.4.1)

где

q = 2p — 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р, включая само число Р, очевидно, являются следующие числа:

1, 2, 22…, 2р-1,

q, 2q, 22q…, 2р-1q.

Запишем сумму этих делителей

1 + 2 +… + 2р– 1 + q(1 + 2 +… + 2р– 1),

которая равна

(1 + 2 +… + 2р– 1)(q + 1) = (1 + 2 +… + 2р– 1) 2р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2р– 1,

то умножьте эту сумму на 2:

2S = 2 + 22 +… +2р– 1 + 2р,

а затем, вычтя S, получите

S = 2p — 1 = q.

Таким образом, сумма всех делителей числа Р есть

2pq = 2 • 2p– 1q,

а сумма всех делителей, кроме самого числа Р = 2p– 1q, равна

2 2p– 1q — 2p– 1q = 2p– 1q =

Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM [7] (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

7

Американская фирма, выпускающая вычислительное оборудование. (Прим. перев.)

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

§ 5. Дружественные числа

Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму числу, и наоборот, то считалось, что это свидетельствует об их духовной близости. В действительности греки знали всего лишь одну пару таких чисел, а именно:

220 = 22 • 5 • 11, 284 = 22 • 71.

Суммами их делителей являются соответственно

1 + 2 + 4 + 5 +10 + 20 + 11 + 22 + 44 + 55 + 110 = 284,

1 + 2 + 4 + 71 + 142 = 220.

Эта пара дружественных чисел оставалась единственной известной до тех пор, пока Пьеру Ферма не удалось найти следующую пару:

17 296 = 24 • 23 • 47, 18 416 = 24 • 1151.

Поиски пар дружественных чисел чрезвычайно удобно вести с помощью ЭВМ. Для каждого числа n при помощи машины определяются все делители этого числа (≠ n) и их сумма m. После этого производится такая же операция с числом m. Если при этом вновь получается первоначальное число n, то пара чисел (n, m) оказывается дружественной. Недавно этим способом в Йельском университете на ЭВМ IBM 7094 были проверены все числа до одного миллиона. В результате была получена коллекция из 42 пар дружественных чисел; некоторые из них оказались ранее неизвестными. Все пары дружественных чисел до 100 000 приведены в табл. 2. При помощи этого метода, как нетрудно видеть, одновременно «вылавливаются» и совершенные числа. Если возникает желание продолжать поиски дальше, то, конечно, это можно сделать, но придется затратить большое количество машинного времени.

Таблица 2

Дружественные числа до 100 000

В действительности мы очень мало знаем о свойствах пар дружественных чисел, однако, можно на основе наших таблиц высказать несколько предположений. Например, отношение одного из них к другому, по-видимому, должно все больше и больше приближаться к 1 по мере того, как они увеличиваются. Из таблицы видно, что эти числа бывают либо оба четными, либо оба нечетными, но не было найдено случая, когда одно число четно, а другое нечетно, хотя поиски дружественных чисел такого вида были проведены среди всех чисел n ≤ 1 3 000 000 000.

Поделиться:
Популярные книги

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Идущий в тени. Книга 2

Амврелий Марк
2. Идущий в тени
Фантастика:
фэнтези
6.93
рейтинг книги
Идущий в тени. Книга 2

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Ты не мой BOY

Рам Янка
5. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты не мой BOY

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу