Чтение онлайн

на главную

Жанры

Приключения инженераРоман
Шрифт:

Автор в панике даже чуть было не решил, что придуманная им система МКС для электромагнетизма никуда не годится, но, овладев собой, подумал, что и полученная в системе МКСА величина для радиуса электрона тоже, вроде бы, не подходит. И, опираясь на размерность, автор понял, что в формуле не хватает плотности эфира, то есть диэлектрической проницаемости вакуума. Подставив в формулу диэлектрическую проницаемость, автор получил несколько иное выражение для «классического радиуса» электрона, а именно:

В системе СГСЭ от такой подстановки не изменилось ничего, поскольку в этой замечательной системе единиц диэлектрическая проницаемость вакуума во есть

безразмерная единица, не имеющая вообще никакого физического смысла. Но в системе единиц СИ эта величин равна, как никак, о = 8,85.10-12 Фарада/метр, и она же, диэлектрическая проницаемость вакуума есть плотность эфира ро в околоземном пространстве, т. е. о = ро = 8,85.10 -12 кг/м3, а тогда все размерности сходятся, и уточненная формула верна. Следовательно, в любой системе единиц «классический радиус» электрона надо считать по формуле

Но теперь расчет по уточненной формуле дал для «классического радиуса» величину, равную не ro = 2,8. 10– 13 см = 2,8. 10– 15 м, а 3,5.10– 14 м., отличающуюся от расчетной в системе СГСЭ в 12,5 раз, а это ровно 4, которые как раз отличают все формулы, написанные в системе СИ от формул, написанных в другой системе единиц.

Поэтому никакого недоразумения здесь нет, кроме того, что в формулах, выраженных не в системе СИ, потерян физический смысл, поскольку диэлектрическая проницаемость все-таки зачем-то нужна, раз она присутствует в формулах, выраженных в системе единиц СИ.

Где же ошибка?

Представляется, что допущенная ошибка имеет серьезный методический характер. Сам факт того, что диэлектрическая проницаемость, параметр вполне физический, была приравнена к некоей безразмерной единице, говорит о том, что уже давно, более ста лет никто не интересовался физическим смыслом электрических единиц. Вся теория электромагнетизма оказалась подчиненной только прикладным задачам, а не поискам сути. И хотя в прикладных задачах это оправдано, в физике это совершенно недопустимо.

Никого не насторожило даже то обстоятельство, что в двух системах единиц, появившихся одновременно, — системах СГСЕ и СГСМ, в которой за абстрактную единицу принята не диэлектрическая проницаемость вакуума, а магнитная проницаемость, размерности одних и тех же величин разные. А поскольку физики и сегодня, несмотря на все указания и нормативы, продолжают упорно придерживаться этих систем единиц, то это значит, что они и сегодня не интересуются их физическим смыслом.

И это физики?!

10. Время и пространство

Занимаясь в свое время синусно-косинусными трансформаторами, автор обратил внимание на то, что напряжение хоть на синусной обмотке статора, хоть на косинусной может быть изображено векторным способом так же, как это делается в обычных векторных диаграммах электрических цепей. Только в электрических цепях любой вектор записывается в виде u = Uo.е ( + — ); где Uo — амплитудное значение синусоидального напряжения, — круговая частота; — фаза; i = -1, а в пространстве в зависимости от угла поворота вектор запишется как u = Uo.е J(o); где Uo — максимальное значение напряжения на обмотке, когда оси обмоток статора и ротора параллельны; — угол поворота ротора; о — начальное значение угла, а j =-1, но уже не во времени, а в пространстве. Отсюда следовало, что любой вектор в электрической схеме, подключенной к синусно-косинусному трансформатору, может быть изображен как u = Uo ( + — o) . е j(- o).

В этом выражении появились так называемые гиперкомплексные числа, то есть мнимые числа, лежащие в разных плоскостях.

На основании таких размышлений был разработан аппарат пространственно-временных диаграмм, с помощью которого было весьма удобно получать различные нелинейные зависимости выходного параметра от входного, что и было использовано в разных схемах. Попутно, выяснилось, что переход от фазовых схем к пространственным позволяет избавиться от проблемы клирфактора, т. е. наличия в питающем напряжении высших гармоник, которые причиняют в фазовых схемах множество хлопот, а в трансформаторных схемах, т. е. построенных по пространственному принципу, никаких хлопот не доставляют.

Но главное оказалось даже не в этом. Главным оказалось то, что с точки зрения математики пространство и время оказались абсолютно эквивалентными, следовательно, любой фазовой, т. е. временной схеме должна соответствовать пространственная схема и наоборот.

Проверка на многих схемах показала полную справедливость такого утверждения. Мы брали схему, построенную на фазовых принципах и тут же превращали ее в пространственную. Брали пространственную схему и тут же превращали ее в фазовую. Это хорошо показало себя при разработке емкостных фазовращателей, которые тут же были преобразованы в амплитудные мостовые многолучевые схемы. На этой основе родились, в частности, емкостные векторные раскладчики, которых до того времени вообще не существовало, и другие полезные устройства.

Интересуясь проблемами квантовой механики, автор как-то наткнулся на опубликованную в 1940 г. статью известного немецкого математика Е. Маделунга, который, правда, не занимался ни фазовращателями, ни трансформаторными схемами, но зато анализировал решения, вытекающие из известного уравнения Шредингера.

Уравнение Шредингера не представляет собой чего-то сверх особенного. Это уравнение выражает собой изменения потенциальной энергии некоей массы, которая колеблется в пространстве под действием упругих сил. Так же колеблется обычный маятник под действием силы тяжести, так же колеблется и обычный часовой балансир на спиральной пружине, если, конечно у них нет потерь. Только мы, инженеры, привыкли к тому, что эти колебания выражаются в виде изменения отклонений массы от среднего положения. А Шредингер, наверняка прослышав о Планке и Боре, у которых все выражается в энергиях — и частота фотона, и орбиты электронов в атомах, решил попытать счастья в том же направлении. И надо сказать, что счастье вполне ему улыбнулось, потому что это уравнение и все решения, вытекающие из него применительно к атому, нашли широчайшее применение.

Маделунг тоже решил попытать счастья в том же направлении, но несколько по-другому. Видимо, не зная свойств гиперкомплексных чисел или не догадываясь о взаимосвязи времени и пространства, он использовал фактически те же гиперкомплесные числа, но в два приема. Он подставил в уравнение Шредингера сначала временной фактор в виде мнимости во времени, а потом пространственный фактор в виде мнимости в пространстве. К своему удовольствию или, наоборот, к ужасу, это неизвестно, он обнаружил, что пришел к гидромеханическому выражению процессов, отображаемых уравнением Шредингера. Получалось, что абстрактно-математическим путем он выявил наличие в пространстве неких стационарных потоков. Потоков чего? Какой среды? Ведь к этому времени уже было хорошо известно, что никакой внутриатомной среды нет, а тут на тебе!

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Ледяное проклятье

Михайлов Дем Алексеевич
4. Изгой
Фантастика:
фэнтези
9.20
рейтинг книги
Ледяное проклятье

Путь Шамана. Шаг 5: Шахматы Кармадонта

Маханенко Василий Михайлович
5. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.34
рейтинг книги
Путь Шамана. Шаг 5: Шахматы Кармадонта

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й