Происхождение мозга
Шрифт:
Другая точка зрения на происхождение нервных клеток сформировалась в работах Клейненберга и Заварзина (Kleinenberg, 1872; Заварзин, 1950). Её суть сводится к тому, что нервная и мышечная системы рассматриваются как «единое и нераздельное целое».
123
а-в — гипотеза братьев Гертвигов; г-е — гипотеза Клейненберга-Заварзина. По гипотезе Гертвигов нервные и мышечные клетки происходят независимо из эктодермы, а затем объединяются в нервномышечный комплекс. По представлениям Клейненберга-Заварзина, из эктодермы возникает клетка одновременно с сенсорными и моторными функциями. Затем она дифференцируется на нервную и мышечную системы. Красные — мышечные
124
Считается, что обе системы возникли одновременно в виде образования, которое не имело дифференцированных мышечных и нервных компонентов. В соответствии с этой гипотезой первичными были клетки, выделившиеся из эктодермы и обладавшие как нервными, так и мышечными функциями (см. рис. II-1, г, д). Часть клетки была способна к чувствительности, а другая — к сокращению. В гипотезе подчёркивается
первичность морфофункциональной связи между нервными и мышечными клетками. В дальнейшем, по мнению авторов, произошла дифференциация чувствительно-сократимых клеток на чисто сенсорные и моторные, а общность их происхождения стала основой нервно-мышечных взаимодействий (см. рис. II-1, е). Обе теории роднит то, что они ничего не объясняют. Непонятно, зачем вообще понадобились нервные, да и мышечные клетки, почему они возникли одновременно и откуда взялись отростки нервных клеток вместе с особыми свойствами рецептировать, генерировать и проводить сигналы. В дискуссии о природе нервномышечных взаимодействий как-то сам собой исчез биологический смысл происхождения нервных клеток. Этот вопрос можно рассмотреть и с других позиций.
§ 19. Происхождение нейронов и пронейрональной сети
Сначала определимся с эпохой и животными, претендующими на первенство в появлении нервной системы. Если рассмотреть возможных кандидатов на это почётное место, то самыми соблазнительными выглядят кишечнополостные, или стрекающие (Cnidaria) (см. рис. I-2; рис. II-2) — радиально-симметричные, прикреплённые и свободноплавающие животные с одним анусо-оральным отверстием и несложной биологией. Стенка тела сформирована всего двумя слоями клеток и промежуточной тонкой неклеточной мезоглеей. В наружном слое клеток лежат уникальные клетки — книдоциты, содержащие стрекательные органеллы. Таких клеток нет у многоклеточных других групп. Их диффузная нервная система распределена в мезоглее и слабо дифференцирована. Нервные клетки весьма универсальны и обладают как чувствительной, так и эффекторной функцией. Они объединены в сеть с радиальной симметрией почти без выраженных ганглиев (Беклемишев, 1964; Барнс и др., 1992). Единственным местом, пригодным на роль нейрального центра, является окологлоточное нервное кольцо.
Столь же незатейливо и поведение этих животных. Прокачивание воды и захват щупальцами проплывающей мимо добычи — не самое интеллектуальное занятие, поэтому симбиотические рыбки из рода Amphiprion легко обманывают простодушных актиний и пользуются их
125
128
и могут трансформироваться в любой другой тип клеток. Все слои клеток достаточно условны, поскольку никаких базальных мембран, их подстилающих, нет. В связи с этим губки являются достойным объектом для эволюционных фантазий.
Допустим, что донервное многоклеточное существо было отдалённо похоже на современную губку с простейшей асконоидной организацией (см. рис. II-3, а). Пища и вода поступают во внутреннюю камеру через остии, захватываются воротничковыми клетками, а не захваченные частицы выводятся через оскулум. Часть пищевых частиц попадает амебоидным клеткам. Эти частички передаются другим клеткам — пинакоцитам. Начинать эволюционную реконструкцию появления нервных клеток с заявления о «необходимости рецептировать внешнюю среду» невозможно, так как клетки ничего о среде не знали, а вызвать в их цитоплазме «необходимость» можно только крайне вескими причинами. По-видимому, никакой связи с нервными функциями у будущих нервных клеток быть не могло. Если допустить, что нервные клетки возникли из эктодермы, а это подтверждается всем опытом эмбриологии, то надо обратить внимание на положение пинакоцитов в клеточной системе губок. Их основная функция — защита внешней поверхности губки. Для того чтобы их превратить в нервные клетки, надо ответить на несколько вопросов. Во-первых, почему изменилась морфология этих клеток — образовались отростки? Во-вторых, как они оказались в мезохиле? В-третьих, почему другие клетки стали подчиняться активности этих пронейронов?
Учитывая, что важнейшим параметром эволюции нервной системы является уровень метаболизма нервной системы, посмотрим на вопрос происхождения нервных клеток с позиции элементарного потребления пищи. Нейроны обладают метаболизмом, сопоставимым с нагруженными мышечными клетками, что требует оценки происхождения нервной ткани именно с этих позиций.
Кратко рассмотрим
129
а — разрез современной губки с простейшей асконоидной организацией без нервных клеток; б, в — два этапа физиологической дифференцировки и появления отростков у клеток эктодермы; г — образование нервной сети, как у гидроидных стрекающих. Стрелками показано движение воды.
130
самыми привилегированными в отношении пищи клетками. Их можно назвать первичными пищевыми. Всем остальным достаётся только то, что могут передать эти два типа клеток. Они делятся частичками пищи, но метаболизм остальных клеток всегда будет намного ниже, чем у них. К вторичным пищевым клетками относятся пороциты и пинакоциты. Они непосредственно не получают пищевых частиц из атриума и довольствуются тем, что им достаётся от хоаноцитов и амебоидных клеток. Именно эти различия в потреблении пищи могли привести к первичным морфологическим изменениям пинакоцитов. Пинакоциты являются прообразом эктодермальных клеток, что отражено в названии этого слоя — пинакодерма (McConnel, 1966). По-видимому, на первом этапе пинакоциты просто стремились увеличить свой метаболизм путём удлинения отростков (см. рис. II-3, б). Эти отростки доходили до амебоцитов или даже хоаноцитов, что позволяло получать большее количество пищевых частиц. Пища стала тем стимулом, который привёл к изменению формы клеток покровного слоя. Следующим этапом стало увеличение размеров отростков и ещё большее повышение метаболизма некоторых пинакоцитов. Они оказались в уникальном положении. Находясь на внешней поверхности тела, они получали максимум информации обо всех событиях вокруг организма. Вместе с тем, располагаясь на основных пищеварительных клетках, они получали исчерпывающую информацию об успешности питания (см. рис. II-3, в). Увеличив количество отростков, пинакоциты трансформировались в пронейроны, а их тела начали погружаться в мезоглею. Инерционность биохимических процессов обусловила запоминание донервного типа. Если внешнее воздействие коррелировало с увеличением количества пищи, то такие пронейроны начинали взаимодействовать с хоаноцитами. Хоаноциты увеличивали ток воды через атриум, что приводило к увеличению потребления пищи и хоаноцитами, и пронейронами. Эта простая система позволила организмам дифференциально увеличивать активность хоаноцитов при наличии пищи и уменьшать при её отсутствии. Биологические преимущества такой регуляции очевидны.
Затем наступил принципиальный этап интеграции отдельных пронейрональных клеток в элементарную сеть, охватывающую всё тело древней губки (см. рис. II– З, г). Для это должны были произойти следующие события. Во-первых, отдельные пронейроны несколько трансформировали своё тело, оставив в пинакодерме только чувствительные отростки. Во-вторых, они сформировали контакты между собой и клетками других слоёв. Причины этих событий довольно понятны. Если
131
речь идёт о пище, то любая информация, увеличивающая её поступление, будет поддерживаться в эволюции, поэтому пронейроны могли быстро специализироваться на решении указанной проблемы. Они интегрировали работу губки-кишечнополостного по принципу пища—направленная активность. В такой информации заинтересованы не только хоаноциты, но и пинакоциты и амебоидные клетки. Поэтому отростки образовывали не только пронейроны, но и клетки всех остальных типов. Эти отростки заканчивались на поверхности пронейронов. Через них по состоянию пронейронов другие типы клеток информировались о наличии или отсутствии пищи. Важным этапом в эволюции стала интеграция пронейронов и пинакоцитов, способных сокращаться. Современные пинакоциты губок не утратили этой способности. Следствием такой интеграции тела губок при помощи пронейронов стало огромное пищевое преимущество нового организма. Он мог направленно изменять своё тело или перенаправлять поток воды в зоны с большим количеством пищи. Надо отметить, что такой тип интеграции нервной и моторной систем сохранился и до наших дней. Нервно-мышечный комплекс круглых червей (Nematoda) состоит из мышечных клеток, которые образуют отростки, устанавливающие связи с нервными стволами, а не наоборот. При этом формируются синаптические связи, и мышечные клетки подчиняются активности нервных стволов. Сходным образом устроен эффекторный аппарат головохордовых (Cephalochordata). У ланцетника отростки мышечных клеток проникают в нервную трубку и устанавливают синаптические контакты с нейронами. Передача управляющих мускулатурой сигналов осуществляется по отросткам мышечных клеток, а не нейронов. Следовательно, такой вариант интеграции не уникален и мог существовать у губкообразных существ с пронейрональной нервной системой.