Происхождение мозга
Шрифт:
135
136
Не исключено, что мезоглея была у этих существ намного толще и рыхлее. Пищеварительная нервная сеть с энтодермальными сократимыми клетками функционировала относительно автономно, перемещая пищевые частицы без эктодермальных сокращений. Такой самодвижущийся пылесос мог быть крайне эффективным при избытке мелких пищевых частиц. Эволюционные преимущества подвижных фильтраторов хорошо известны, поскольку усатые киты являются самыми крупными животными на планете.
Совершенно иная нервная система у свободноплавающих сцифоидных медуз. Они преимущественно хищники с диффузной нервной системой, которая интегрируется околоротовым круговым
Можно предположить, что потенциальный предковый вариант строения нервной системы беспозвоночных выглядел как некое кишечнополостное со скоростными тяжами проведения нервных клеток ^м. рис. II-4, в). Если допустить эволюционное продолжение концентрации нервных клеток, то из такой морфологической организации с равной вероятностью могла появиться нервная система двух типов строения (см. рис. II-4, г, д). Эти типы различаются только по туловищным комиссурам, которые соединяют продольные нервные стволы.
Окологлоточное нервное кольцо имеет примерно одинаковое строение и интегрирует активность всей нервной сети животного. В хорошо известном плане строения радиально-симметричной нервной системы многих современных кишечнополостных нет поперечных комиссур, соединяющих нервные стволы. Этот тип мог эволюционировать по пути сокращения числа нервных стволов. При этом, по-видимому, возникали самые оригинальные варианты симметрии нервной системы. Примером может служить
137
нервная система нематод (рис. II—5, б). Она представлена 4 параллельными стволами, которые соединяются только окологлоточным нервным кольцом. Других комиссур в глоточной зоне и теле круглых червей нет. Важно подчеркнуть, что 4 нервных ствола нематод расположены симметрично, но вопреки ожиданиям в дорсальном, вентральном и латеральном положении (см. рис. 11—5, б), 4 нервных ствола иннервируют треугольный рот и не имеют отростков, проникающих в мышечные клетки. Наоборот, мышечные клетки образуют отростки, которые оканчиваются на дорсальном и вентральном нервных стволах, идущих вдоль тела. Каждая мышечная клетка имеет несколько таких отростков, а сократимые белки локализованы в дистальном участке цитоплазмы. По этим отросткам проходит нервный сигнал, который и заставляет сокращаться группы мышечных клеток.
Вполне вероятно, что у нематод сохранился древнейший механизм «информирования» клеток организма co стороны нервной системы. Мышечные клетки сами заботятся об источнике информации, пригодном для повышения метаболизма. Такой тип нервно-мышечных связей крайне примитивен и претендует на эволюционную первичность, что косвенно подтверждает высказанную ранее гипотезу происхождения нервных клеток. Нематоды многочисленны, но не разнообразны по строению органов чувств. В основном это внешние и внутренние механорецепторы, хеморецепторы (чувствительные ямки, сосочки) и простые глазки. Механорецепторы специализированы на мужские сенсорные органы и спикулы, головные и соматические щетинки. Однако это пример крайней специализации, который показывает, что наиболее эволюционно перспективным был «комиссуральный» путь (см. рис. II-5, в).
Комиссуры, посегментно связывающие продольные нервные стволы, дают существенные преимущества в дифференциальной активности отдельных участков тела. Вполне возможно, что комиссуральные нервные стволы сформировались ещё на уровне гипотетических кишечнополостных с радиальной симметрией. Множественные нервные стволы таких животных могли иметь комиссуры, которые создавали развитую пространственную нервную сеть. Неподвижным особям вполне достаточно бескомиссурного варианта (см. рис. II-5, а), поэтому комиссуры свидетельствуют скорее о подвижном образе жизни. Сегментированная сеть носила вполне практический характер и использовалась для перистальтического движения. Животное двигалось в результате распространения кольцевых перистальтических волн по телу назад относительно движения. Дифференциальное управление такими полостями и окружающими их мышцами возможно только при
138
наличии повторяющихся нейральных сегментов. В таком сегменте должен быть автономный центр, управляющий мышцами, — ганглий. У радиально-симметричного животного их может быть несколько, у билатерально-симметричного — 2 или 4. Такие ганглии расположены в узлах пересечения нервных стволов и поперечных комиссур.
Пересечения постепенно трансформируются в контактные узлы, а затем и в полноценные ганглии. Появление дополнительных периферических центров позволяет им принять на себя часть забот об управлении телом животного. Сегментарные комиссуры с ганглиями являются основным условием возникновения внутри тела специализированных полостей и целома. Без развитой посегментной иннервации септально-целомические конструкции не имели бы биологического смысла. Их использование для перистальтических движений было бы невозможно. Развитая иннервация позволяет деформировать их в широких диапазонах и развивать большие усилия при различных способах перистальтического движения. Следовательно, комиссуры и узловые ганглии создали у радиально-симметричного животного все предпосылки для возникновения сегментарности и билатеральной симметрии.
Радиально-симметричное животное, похожее на трубу с пробегающими по ней волнами, не самый лучший пловец. Этот тип движения очень эффективен в почве, но в воде преимущество получают животные с меньшим числом осей симметрии. Плоскотелые животные с волнообразными движениями тела двигаются быстрее, а их энергетические затраты ниже. Это касается как придонной зоны, так и толщи воды. Замена радиальной симметрии на билатеральную была делом очень небольшого времени. По-видимому, уменьшение числа продольных нервных стволов происходило путём их слияния. Стволы сближались и сливались, как это происходит при метаморфозе насекомых. Мы не знаем, из какой радиальной системы складывалась билатеральная нервная система, но маловероятно, что в ней было нечётное число нервных стволов. В конечном итоге слияние продольных стволов привело к возникновению билатеральноорганизованной нервной системы. Вероятнее всего, билатеральность сложилась в придонном слое. Древнее свободноплавающее существо перешло к придонному образу жизни. Успешно передвигаться внутри придонного слоя могла и радиально-симметричная трубка. Однако более эффективно плавать или ползать по поверхности может билатерально-симметричное существо. Такой тип организации нервной системы широко распространён и среди современных свободноживущих плоских червей — турбеллярий. Встречаются варианты строения с 4 и 2 параллельными нервными стволами (см. рис. II-5, г, е). Судя по всему,
139
140
примерно с такого набора нервных устройств началась эволюция симметричных нейральных конструкций. Надо отметить, что все достоинства описанной нервной системы не могут «противостоять» обильной пище и возможности бесконтрольно размножаться. Идеальные условия обитания или гиперспециализация разрушают любую нервную систему. В связи с этим у паразитических червей часто отсутствуют поперечные комиссуры (см. рис. II-5, д), а иногда и вся нервная система. Тем не менее некоторые свидетельства существования множественных продольных нервных стволов можно встретить даже у трематод. Их нервная система состоит из трёх пар неравноценных нервных тяжей, проходящих вдоль всего тела, похоже устроена нервная система паразитической аскариды. У неё два главных нервных тяжа выполняют основные функции, хотя и не имеют комиссур. Кроме этого, существуют 4 более тонких нервных ствола с второстепенными функциями. Эти примеры крайней специализации показывают, что на первых этапах эволюции различные формы радиальной симметрии были заменены билатеральной.